価格表

在庫・価格 : 2025年04月26日 21時56分 現在

商品名 商品コード メーカー 包装 価格 在庫 リスト
Anti-SARS-CoV/SARS-CoV-2 (COVID-19) Spike, Mouse-Mono(1A9)
データシート
GTX632604 GNTジーンテックス
GeneTex International Corporation
100 μl ¥85,000 2個 追加

在庫・価格 : 2025年04月26日 21時56分 現在

Anti-SARS-CoV/SARS-CoV-2 (COVID-19) Spike, Mouse-Mono(1A9)

  • 商品コード:GTX632604
  • メーカー:GNT
  • 包装:100μl
  • 価格: ¥85,000
  • 在庫:2個
使用文献
No. 文献情報 備考 参照
1 Carossino M et al. Detection of SARS-CoV-2 by RNAscope<sup>&#xAE;</sup>in situ hybridization and immunohistochemistry techniques. Arch. Virol. 2020 Aug;
Carossino M et al
2020/01/01
PubMed
2 Ko CJ et al. Perniosis during the COVID-19 pandemic: Negative Anti-SARS-CoV-2 Immunohistochemistry in Six Patients and Comparison to Perniosis Before the Emergence of SARS-CoV-2. J. Cutan. Pathol. 2020 Aug;
Ko CJ et al
2020/01/01
PubMed
3 Appelberg S et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020 Dec;9(1):1748-1760
Appelberg S et al
2020/01/01
PubMed
4 Bradley BT et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet 2020 08;396(10247):320-332
Bradley BT et al
2020/01/01
PubMed
5 Kudose S et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020 Jul;
Kudose S et al
2020/01/01
PubMed
6 Pulinx B et al. Vertical transmission of SARS-CoV-2 infection and preterm birth. Eur. J. Clin. Microbiol. Infect. Dis. 2020 Jul;
Pulinx B et al
2020/01/01
PubMed
7 Prieto-P辿rez L et al. Histiocytic hyperplasia with hemophagocytosis and acute alveolar damage in COVID-19 infection. Mod. Pathol. 2020 Jul;
Prieto-P辿rez L et al
2020/01/01
PubMed
8 Santonja C et al. COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain reaction-negative patient. Br. J. Dermatol. 2020 Jun;
Santonja C et al
2020/01/01
PubMed
9 Colmenero I et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 2020 Jun;
Colmenero I et al
2020/01/01
PubMed
10 Lip KM et al. Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. J. Virol. 2006 Jan;80(2):941-50
Lip KM et al
2006/01/01
PubMed
11 Yamada T et al. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat Immunol 2021 May;
Yamada T et al
2021/01/01
PubMed
12 Kishimoto M et al. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Viruses 2021 02;13(3)
Kishimoto M et al
2021/01/01
PubMed
13 Roden AC et al. Comparison of In Situ Hybridization, Immunohistochemistry, and Reverse Transcription-Droplet Digital Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Testing in Tissue. Arch Pathol Lab Med 2021 07;
Roden AC et al
2021/01/01
PubMed
14 Liu G et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 2021 04;6(4):467-478
Liu G et al
2021/01/01
PubMed
15 Huang N et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med 2021 05;27(5):892-903
Huang N et al
2021/01/01
PubMed
16 Dicken SJ et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv 2021 Mar;
Dicken SJ et al
2021/01/01
PubMed
17 P辿rez A et al. IgA-Dominant Infection-Associated Glomerulonephritis Following SARS-CoV-2 Infection. Viruses 2021 03;13(4)
P辿rez A et al
2021/01/01
PubMed
18 Tang W.F. et al., Tang W.F., Biomedical Journal, 2021

PubMed
19 Winstone H et al. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. J Virol 2021 04;95(9)
Winstone H et al
2021/01/01
PubMed
20 Monte-Serrano J et al. Granuloma annulare triggered by SARS-CoV-2 infection: Immunohistochemical staining. Dermatol Ther 2021 05;34(3):e14897
Monte-Serrano J et al
2021/01/01
PubMed
21 Azad T et al. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021 May;180:113122
Azad T et al
2021/01/01
PubMed
22 Yeung ML et al. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 2021 04;184(8):2212-2228.e12
Yeung ML et al
2021/01/01
PubMed
23 Sharma P et al. Pathology of COVID-19-associated acute kidney injury. Clin Kidney J 2021 Mar;14(Suppl 1):i30-i39
Sharma P et al
2021/01/01
PubMed
24 Cheng Y.W. et al., Cheng Y.W., bioRxiv, 2021

PubMed
25 Garc鱈a-Arriaza J et al. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike induce robust T- and B-cell immune responses and full efficacy in mice. J Virol 2021 Jan;
Garc鱈a-Arriaza J et al
2021/01/01
PubMed
26 Jang Y et al. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep 2021 01;11(1):821
Jang Y et al
2021/01/01
PubMed
27 Linehan L et al. SARS-CoV-2 placentitis: An uncommon complication of maternal COVID-19. Placenta 2021 01;104:261-266
Linehan L et al
2021/01/01
PubMed
28 Lu-Culligan A et al. SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface. medRxiv 2021 Jan;
Lu-Culligan A et al
2021/01/01
PubMed
29 Zhou H et al. B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. bioRxiv 2021 Mar;
Zhou H et al
2021/01/01
PubMed
30 Lamers MM et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife 2021 04;10
Lamers MM et al
2021/01/01
PubMed
31 Wang L et al. Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein. Theranostics 2021;11(2):649-664
Wang L et al
2021/01/01
PubMed
32 Jang Y et al. Comparison of Antiviral Activity of Gemcitabine with 2&#39;-Fluoro-2&#39;-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2. Int J Mol Sci 2021 Feb;22(4)
Jang Y et al
2021/01/01
PubMed
33 Di Teodoro G et al. SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Vet Microbiol 2021 Jan;252:108933
Di Teodoro G et al
2021/01/01
PubMed
34 Welsh E et al. SARS-CoV-2 spike protein positivity in pityriasis rosea-like and urticaria-like rashes of COVID-19. Br J Dermatol 2021 06;184(6):1194-1195
Welsh E et al
2021/01/01
PubMed
35 Rebendenne A et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol 2021 Jan;
Rebendenne A et al
2021/01/01
PubMed
36 Ozono S et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 2021 02;12(1):848
Ozono S et al
2021/01/01
PubMed
37 Tada T et al. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 2021 Feb;
Tada T et al
2021/01/01
PubMed
38 Song E et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021 03;218(3)
Song E et al
2021/01/01
PubMed
39 Chiuppesi F et al. Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine. bioRxiv 2020 Jul;
Chiuppesi F et al
2020/01/01
PubMed
40 Lokugamage KG et al. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv 2020 Apr;
Lokugamage KG et al
2020/01/01
PubMed
41 Havranek KE et al. SARS-CoV-2 Spike Alterations Enhance Pseudoparticle Titers and Replication-Competent VSV-SARS-CoV-2 Virus. Viruses 2020 12;12(12)
Havranek KE et al
2020/01/01
PubMed
42 Bernard I et al. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2020 12;13(1)
Bernard I et al
2020/01/01
PubMed
43 Vandergaast R et al. Development and validation of IMMUNO-COV&#x2122;: a high-throughput clinical assay for detecting antibodies that neutralize SARS-CoV-2. bioRxiv 2020 May;
Vandergaast R et al
2020/01/01
PubMed
44 Gao C et al. SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors. bioRxiv 2020 Jul;
Gao C et al
2020/01/01
PubMed
45 Heaton BE et al. SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2. bioRxiv 2020 Aug;
Heaton BE et al
2020/01/01
PubMed
46 Oguntuyo KY et al. Quantifying absolute neutralization titers against SARS-CoV-2 by a standardized virus neutralization assay allows for cross-cohort comparisons of COVID-19 sera. medRxiv 2020 Aug;
Oguntuyo KY et al
2020/01/01
PubMed
47 Drayman N et al. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 <i>in vitro</i>. bioRxiv 2020 Sep;
Drayman N et al
2020/01/01
PubMed
48 Olagnier D et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020 10;11(1):4938
Olagnier D et al
2020/01/01
PubMed
49 Dalskov L et al. SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep 2020 12;21(12):e51252
Dalskov L et al
2020/01/01
PubMed
50 Pellegrini L et al. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell 2020 12;27(6):951-961.e5
Pellegrini L et al
2020/01/01
PubMed
51 Katsura H et al. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020 12;27(6):890-904.e8
Katsura H et al
2020/01/01
PubMed
52 Li X et al. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles in cellular models. bioRxiv 2020 Oct;
Li X et al
2020/01/01
PubMed
53 Plescia CB et al. SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles. J Biol Chem 2020 Nov;
Plescia CB et al
2020/01/01
PubMed
54 Chiuppesi F et al. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 2020 11;11(1):6121
Chiuppesi F et al
2020/01/01
PubMed
55 Ng JH et al. Pathophysiology and Pathology of Acute Kidney Injury in Patients With COVID-19. Adv Chronic Kidney Dis 2020 09;27(5):365-376
Ng JH et al
2020/01/01
PubMed
56 Swann H et al. Minimal system for assembly of SARS-CoV-2 virus like particles. Sci Rep 2020 12;10(1):21877
Swann H et al
2020/01/01
PubMed
57 Huang KY et al. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol Med 2021 01;13(1):e12828
Huang KY et al
2021/01/01
PubMed
58 Zhao CL et al. Pathological findings in the postmortem liver of patients with coronavirus disease 2019 (COVID-19). Hum Pathol 2021 03;109:59-68
Zhao CL et al
2021/01/01
PubMed
59 Valk JE et al. Detection of SARS-CoV-2 in placental but not fetal tissues in the second trimester. J Perinatol 2021 05;41(5):1184-1186
Valk JE et al
2021/01/01
PubMed
60 Nunes-Santos CJ et al. N-Glycan Modification in Covid-19 Pathophysiology: In vitro Structural Changes with Limited Functional Effects. J Clin Immunol 2021 02;41(2):335-344
Nunes-Santos CJ et al
2021/01/01
PubMed
61 Wei C et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab 2020 12;2(12):1391-1400
Wei C et al
2020/01/01
PubMed
62 Hattori SI et al. GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. mBio 2020 08;11(4)
Hattori SI et al
2020/01/01
PubMed
63 Boix-Vilanova J et al. Grover-like skin eruption: another cutaneous manifestation in a COVID-19 patient. Int J Dermatol 2020 Oct;59(10):1290-1292
Boix-Vilanova J et al
2020/01/01
PubMed
64 Gallicano GI et al. Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility. Gene Ther 2020 Nov;
Gallicano GI et al
2020/01/01
PubMed
65 Bussani R et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 2020 Nov;61:103104
Bussani R et al
2020/01/01
PubMed
66 Varela Barca L et al. An unexplained death after routine cardiac surgery: how long have we dealt with coronavirus disease 2019? Interact Cardiovasc Thorac Surg 2020 12;31(6):904-905
Varela Barca L et al
2020/01/01
PubMed
67 da S G Pedrosa C et al. Non-permissive SARS-CoV-2 infection of neural cells in the developing human brain and neurospheres. bioRxiv 2020 Oct;
da S G Pedrosa C et al
2020/01/01
PubMed
68 Lokugamage KG et al. Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. J Virol 2020 11;94(23)
Lokugamage KG et al
2020/01/01
PubMed
69 Xia H et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 2020 10;33(1):108234
Xia H et al
2020/01/01
PubMed
70 Chiuppesi F et al. Development of a Multi-Antigenic SARS-CoV-2 Vaccine Using a Synthetic Poxvirus Platform. Res Sq 2020 Jul;
Chiuppesi F et al
2020/01/01
PubMed
71 Andina D et al. Suspected COVID-19-related reticulated purpura of the soles in an infant. Pediatr Dermatol 2021 Jan;38(1):301-303
Andina D et al
2021/01/01
PubMed
72 Szabolcs M et al. Identification of Immunohistochemical Reagents for In Situ Protein Expression Analysis of Coronavirus-associated Changes in Human Tissues. Appl Immunohistochem Mol Morphol 2021 01;29(1):5-12
Szabolcs M et al
2021/01/01
PubMed
73 Clausen TM et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020 11;183(4):1043-1057.e15
Clausen TM et al
2020/01/01
PubMed
74 Matschke J et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020 11;19(11):919-929
Matschke J et al
2020/01/01
PubMed
75 Goodlet KJ et al. COVID-19 in a lung transplant recipient: Exploring the diagnostic role of circulating exosomes and the clinical impact of advanced immunosuppression. Transpl Infect Dis 2021 Apr;23(2):e13480
Goodlet KJ et al
2021/01/01
PubMed
76 Gambichler T et al. SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a chilblain-like skin lesion. J Eur Acad Dermatol Venereol 2021 Mar;35(3):e187-e189
Gambichler T et al
2021/01/01
PubMed
77 Borczuk AC et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol 2020 11;33(11):2156-2168
Borczuk AC et al
2020/01/01
PubMed
78 Torrelo A et al. Erythema multiforme-like lesions in children and COVID-19. Pediatr Dermatol 2020 May;37(3):442-446
Torrelo A et al
2020/01/01
PubMed
79 Cheng YW et al. D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage. mBio 2021 08;12(4):e0058721
Cheng YW et al
2021/01/01
PubMed
80 Araujo-Silva CA et al. Presumed SARS-CoV-2 Viral Particles in the Human Retina of Patients With COVID-19. JAMA Ophthalmol 2021 09;139(9):1015-1021
Araujo-Silva CA et al
2021/01/01
PubMed
81 Dal Ferro M et al. SARS-CoV-2, myocardial injury and inflammation: insights from a large clinical and autopsy study. Clin Res Cardiol 2021 Jul;
Dal Ferro M et al
2021/01/01
PubMed
82 Lam LKM et al. Erythrocytes identify complement activation in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol 2021 08;321(2):L485-L489
Lam LKM et al
2021/01/01
PubMed
83 Nchioua R et al. SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. mBio 2020 10;11(5)
Nchioua R et al
2020/01/01
PubMed
84 Cheng YW et al. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Rep 2020 10;33(2):108254
Cheng YW et al
2020/01/01
PubMed
85 Conzelmann C et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. J Extracell Vesicles 2020 Aug;9(1):1808281
Conzelmann C et al
2020/01/01
PubMed
86 Song E et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv 2020 Sep;
Song E et al
2020/01/01
PubMed
87 Ramani A et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020 10;39(20):e106230
Ramani A et al
2020/01/01
PubMed
88 Sasaki M et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021 01;17(1):e1009233
Sasaki M et al
2021/01/01
PubMed
89 Tada T et al. Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes. mBio 2021 06;12(3):e0069621
Tada T et al
2021/01/01
PubMed
90 Matsuura R et al. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO<sub>2</sub> Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021 05;13(5)
Matsuura R et al
2021/01/01
PubMed
91 Wu CT et al. SARS-CoV-2 infects human pancreatic &#x3B2; cells and elicits &#x3B2; cell impairment. Cell Metab 2021 08;33(8):1565-1576.e5
Wu CT et al
2021/01/01
PubMed
92 Colson A et al. Clinical and in&#xA0;Vitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2. Am J Pathol 2021 09;191(9):1610-1623
Colson A et al
2021/01/01
PubMed
93 Masterson AN et al. Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors. Anal Chem 2021 06;93(25):8754-8763
Masterson AN et al
2021/01/01
PubMed
94 Yang AC et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021 07;595(7868):565-571
Yang AC et al
2021/01/01
PubMed
95 Higuchi Y et al. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun 2021 06;12(1):3802
Higuchi Y et al
2021/01/01
PubMed
96 Fenizia C et al. SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2. Cells 2021 06;10(6)
Fenizia C et al
2021/01/01
PubMed
97 Conzelmann C et al. An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Res 2020 09;181:104882
Conzelmann C et al
2020/01/01
PubMed
98 Ciccosanti F et al. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021 06;190:105064
Ciccosanti F et al
2021/01/01
PubMed
99 Braga L et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 2021 06;594(7861):88-93
Braga L et al
2021/01/01
PubMed
100 Sui Y et al. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight 2021 04;6(10)
Sui Y et al
2021/01/01
PubMed
101 Kim YJ et al. The Impact on Infectivity and Neutralization Efficiency of SARS-CoV-2 Lineage B.1.351 Pseudovirus. Viruses 2021 04;13(4)
Kim YJ et al
2021/01/01
PubMed
102 Di Domenico M et al. Detection of SARS-COV-2 Proteins Using an ELISA Test. Diagnostics (Basel) 2021 Apr;11(4)
Di Domenico M et al
2021/01/01
PubMed
103 Harbour JC et al. Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. J Immunol 2021 06;206(11):2596-2604
Harbour JC et al
2021/01/01
PubMed
104 Gutmann C et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat Commun 2021 06;12(1):3406
Gutmann C et al
2021/01/01
PubMed
105 Kumar A et al. SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors. J Virol 2021 06;95(13):e0026621
Kumar A et al
2021/01/01
PubMed
106 Seo JS et al. The Microvillar and Solitary Chemosensory Cells as the Novel Targets of Infection of SARS-CoV-2 in Syrian Golden Hamsters. Viruses 2021 08;13(8)
Seo JS et al
2021/01/01
PubMed
107 Gomes I et al. SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. Lancet Reg Health Am 2021 Oct;2:100046
Gomes I et al
2021/01/01
PubMed
108 Uemura K et al. 5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2. iScience 2021 Oct;24(10):103120
Uemura K et al
2021/01/01
PubMed
109 Navaratnarajah CK et al. Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. J Virol 2021 11;95(24):e0136821
Navaratnarajah CK et al
2021/01/01
PubMed
110 Matsuoka K et al. SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer. J Biol Chem 2022 Feb;:101724
Matsuoka K et al
2022/01/01
PubMed
111 Suzuki R et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 2022 Feb;
Suzuki R et al
2022/01/01
PubMed
112 Kung YA et al. Acyl-Coenzyme A Synthetase Long-Chain Family Member 4 Is Involved in Viral Replication Organelle Formation and Facilitates Virus Replication via Ferroptosis. mBio 2022 Jan;:e0271721
Kung YA et al
2022/01/01
PubMed
113 Kim Y et al. MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cell Mol Immunol 2022 02;19(2):234-244
Kim Y et al
2022/01/01
PubMed
114 Wan L et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat Metab 2022 01;4(1):29-43
Wan L et al
2022/01/01
PubMed
115 Fenizia C et al. Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiol Spectr 2022 02;10(1):e0150421
Fenizia C et al
2022/01/01
PubMed
116 Tada T et al. High-titer neutralization of Mu and C.1.2 SARS-CoV-2 variants by vaccine-elicited antibodies of previously infected individuals. Cell Rep 2022 01;38(2):110237
Tada T et al
2022/01/01
PubMed
117 Singh RD et al. The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications. Biochim Biophys Acta Mol Basis Dis 2022 03;1868(3):166322
Singh RD et al
2022/01/01
PubMed
118 Yokoi S et al. COVID-19-associated livedo and purpura: clinical and histopathological findings. Eur J Dermatol 2021 Aug;
Yokoi S et al
2021/01/01
PubMed
119 Kongsuphol P., et al., A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies., Communications Medicine., 2021

PubMed
120 Zhang Z et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ 2021 09;28(9):2765-2777
Zhang Z et al
2021/01/01
PubMed
121 Rosner-Tenerowicz A et al. Placental pathology in a pregnant woman with severe COVID-19 and successful ECMO treatment: a case report. BMC Pregnancy Childbirth 2021 Nov;21(1):760
Rosner-Tenerowicz A et al
2021/01/01
PubMed
122 Al-Beltagi S et al. Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin. Virulence 2021 12;12(1):2946-2956
Al-Beltagi S et al
2021/01/01
PubMed
123 Ohtsuka J et al. Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. iScience 2021 Dec;24(12):103379
Ohtsuka J et al
2021/01/01
PubMed
124 Saito A et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 2022 02;602(7896):300-306
Saito A et al
2022/01/01
PubMed
125 Kim M et al. In Vitro Replication Inhibitory Activity of Xanthorrhizol against Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2021 Nov;9(11)
Kim M et al
2021/01/01
PubMed
126 Zhong C et al. Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. NPJ Vaccines 2021 Nov;6(1):139
Zhong C et al
2021/01/01
PubMed
127 Xiao Y et al. A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell 2021 12;184(25):6037-6051.e14
Xiao Y et al
2021/01/01
PubMed
128 Zhao L., et al., SARS-CoV-2 spike protein harnesses SNX27-mediated endocytic recycling pathway., MedComm., 2021

PubMed
129 Shue B et al. Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. J Virol 2021 11;95(24):e0059621
Shue B et al
2021/01/01
PubMed
130 Johnson JE et al. Coronavirus Disease 2019 (COVID-19) Coronary Vascular Thrombosis: Correlation with Neutrophil but Not Endothelial Activation. Am J Pathol 2022 01;192(1):112-120
Johnson JE et al
2022/01/01
PubMed
131 Carter-Timofte ME et al. Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infect Dis 2021 11;7(11):3034-3051
Carter-Timofte ME et al
2021/01/01
PubMed
132 Kudose S et al. Longitudinal Outcomes of COVID-19-Associated Collapsing Glomerulopathy and Other Podocytopathies. J Am Soc Nephrol 2021 Nov;32(11):2958-2969
Kudose S et al
2021/01/01
PubMed
133 Ren H et al. Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection. Biol Direct 2021 10;16(1):20
Ren H et al
2021/01/01
PubMed
134 Tada T et al. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 2021 Nov;24(11):103341
Tada T et al
2021/01/01
PubMed
135 Kim DH et al. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci Rep 2021 11;11(1):21462
Kim DH et al
2021/01/01
PubMed
136 Thyrsted J et al. Influenza A induces lactate formation to inhibit type I IFN in primary human airway epithelium. iScience 2021 Nov;24(11):103300
Thyrsted J et al
2021/01/01
PubMed
137 Neuberger M et al. Duodenal tropism of SARS-CoV-2 and clinical findings in critically ill COVID-19 patients. Infection 2022 Oct;50(5):1111-1120
Neuberger M et al
2022/01/01
PubMed
138 Gehlhausen JR et al. Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022 Mar;119(9)
Gehlhausen JR et al
2022/01/01
PubMed
139 Magalh達es AC et al. InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens 2022 Mar;11(3)
Magalh達es AC et al
2022/01/01
PubMed
140 Ramadan AA et al. Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Viruses 2022 Mar;14(3)
Ramadan AA et al
2022/01/01
PubMed
141 Dorman LC et al. A type I interferon response defines a conserved microglial state required for effective neuronal phagocytosis. bioRxiv 2022 Feb;
Dorman LC et al
2022/01/01
PubMed
142 Song J et al. LRRC15 is an inhibitory receptor blocking SARS-CoV-2 spike-mediated entry <i>in trans</i>. bioRxiv 2021 Nov;
Song J et al
2021/01/01
PubMed
143 Zhao L et al. SARS-CoV-2 spike protein harnesses SNX27-mediated endocytic recycling pathway. MedComm (2020) 2021 Dec;2(4):798-809
Zhao L et al
2021/01/01
PubMed
144 Biering SB et al. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-&#x3B2; signaling. bioRxiv 2021 Dec;
Biering SB et al
2021/01/01
PubMed
145 De Angelis M et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines 2021 Nov;9(11)
De Angelis M et al
2021/01/01
PubMed
146 Storti B et al. A spatial multi-scale fluorescence microscopy toolbox discloses entry checkpoints of SARS-CoV-2 variants in Vero E6 cells. Comput Struct Biotechnol J 2021;19:6140-6156
Storti B et al
2021/01/01
PubMed
147 Chen HY et al. Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. J Virol 2021 Oct;95(22):e0096621
Chen HY et al
2021/01/01
PubMed
148 Oguntuyo KY et al. Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. mBio 2021 Feb;12(1)
Oguntuyo KY et al
2021/01/01
PubMed
149 De Santis R et al. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. J Photochem Photobiol 2021 Dec;8:100082
De Santis R et al
2021/01/01
PubMed
150 Liu S et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun 2021 Oct;12(1):5739
Liu S et al
2021/01/01
PubMed
151 Nakayama T et al. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021 Oct;2(10):100421
Nakayama T et al
2021/01/01
PubMed
152 Mirabelli C et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc Natl Acad Sci U S A 2021 Sep;118(36)
Mirabelli C et al
2021/01/01
PubMed
153 Li X et al. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles. PLoS Pathog 2021 Sep;17(9):e1009898
Li X et al
2021/01/01
PubMed
154 Kulkarni R et al. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021;16(9):e0257191
Kulkarni R et al
2021/01/01
PubMed
155 Sasaki M et al. SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. mBio 2021 08;12(4):e0141521
Sasaki M et al
2021/01/01
PubMed
156 Boyraz B et al. Placental pathology from COVID-19-recovered (nonacute) patients. Hum Pathol 2022 Jul;125:18-22
Boyraz B et al
2022/01/01
PubMed
157 Riccio A et al. Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cell Mol Life Sci 2022 Apr;79(5):227
Riccio A et al
2022/01/01
PubMed
158 Wanner N et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat Metab 2022 Mar;4(3):310-319
Wanner N et al
2022/01/01
PubMed
159 Ariumi Y. Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection. J Virol 2022 Mar;96(6):e0000222
Ariumi Y
2022/01/01
PubMed
160 Trevelin SC et al. Disrupted Peyer&#39;s Patch Microanatomy in COVID-19 Including Germinal Centre Atrophy Independent of Local Virus. Front Immunol 2022;13:838328
Trevelin SC et al
2022/01/01
PubMed
161 Cao J et al. Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses 2022 Feb;14(2)
Cao J et al
2022/01/01
PubMed
162 Guo W et al. Topical TMPRSS2 inhibition prevents SARS-CoV-2 infection in differentiated human airway cultures. Life Sci Alliance 2022 Apr;5(4)
Guo W et al
2022/01/01
PubMed
163 Garcia-Flores V et al. Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat Commun 2022 Jan;13(1):320
Garcia-Flores V et al
2022/01/01
PubMed
164 Bordoni V et al. The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates regulatory/inflammatory signals. iScience 2022 Feb;25(2):103854
Bordoni V et al
2022/01/01
PubMed
165 Chang YC et al. A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med 2022 Apr;14(4):e15298
Chang YC et al
2022/01/01
PubMed
166 Ahamad S et al. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front Genet 2022;13:866474
Ahamad S et al
2022/01/01
PubMed
167 Meng B et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature 2022 Feb;
Meng B et al
2022/01/01
PubMed
168 Santos A et al. Absence of SARS-CoV-2 Spike glycoprotein expression in placentas from individuals after mRNA SARS-CoV-2 vaccination. Mod Pathol 2022 Sep;35(9):1175-1180
Santos A et al
2022/01/01
PubMed
169 D鱈az-Salinas MA et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. Elife 2022 Mar;11
D鱈az-Salinas MA et al
2022/01/01
PubMed
170 R旦ltgen K et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022 Mar;185(6):1025-1040.e14
R旦ltgen K et al
2022/01/01
PubMed
171 Welsh E et al. Negative SARS-CoV-2 antibodies in patients with positive immunohistochemistry for spike protein in pityriasis rosea-like eruptions. J Eur Acad Dermatol Venereol 2022 Sep;36(9):e661-e662
Welsh E et al
2022/01/01
PubMed
172 Nirenberg MS et al. Histopathology of persistent long COVID toe: A case report. J Cutan Pathol 2022 Sep;49(9):791-794
Nirenberg MS et al
2022/01/01
PubMed
173 Mac Kain A et al. Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nat Commun 2022 May;13(1):2442
Mac Kain A et al
2022/01/01
PubMed
174 Panina I et al. Molecular Dynamics of DHHC20 Acyltransferase Suggests Principles of Lipid and Protein Substrate Selectivity. Int J Mol Sci 2022 May;23(9)
Panina I et al
2022/01/01
PubMed
175 Yamasoba D et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 2022 Jun;185(12):2103-2115.e19
Yamasoba D et al
2022/01/01
PubMed
176 Hayashi H et al. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr Res Transl Med 2022 Sep;70(4):103348
Hayashi H et al
2022/01/01
PubMed
177 Nyein CM et al. Severe de novo liver injury after Moderna vaccination - not always autoimmune hepatitis. J Hepatol 2022 Aug;77(2):556-558
Nyein CM et al
2022/01/01
PubMed
178 Ji N et al. SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients. Emerg Microbes Infect 2022 Dec;11(1):1115-1125
Ji N et al
2022/01/01
PubMed
179 Pinto AL et al. Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. Nat Commun 2022 Mar;13(1):1609
Pinto AL et al
2022/01/01
PubMed
180 Yang H et al. Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent endocytosis entry of SARS-CoV-2 into host cells. Virol Sin 2022 Jun;37(3):380-389
Yang H et al
2022/01/01
PubMed
181 Gerber PP et al. A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. PLoS Pathog 2022 Feb;18(2):e1010265
Gerber PP et al
2022/01/01
PubMed
182 Gupta R. SARS-CoV-2 Omicron spike mediated immune escape and tropism shift. Res Sq 2022 Jan;
Gupta R
2022/01/01
PubMed
183 Peng KW et al. Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine 2022 Apr;40(15):2342-2351
Peng KW et al
2022/01/01
PubMed
184 Grossegesse M et al. Deep Time Course Proteomics of SARS-CoV- and SARS-CoV-2-Infected Human Lung Epithelial Cells (Calu-3) Reveals Strong Induction of Interferon-Stimulated Gene Expression by SARS-CoV-2 in Contrast to SARS-CoV. J Proteome Res 2022 Feb;21(
Grossegesse M et al
2022/01/01
PubMed
185 Wei SC et al. An Integrated Platform for Serological Detection and Vaccination of COVID-19. Front Immunol 2021;12:771011
Wei SC et al
2021/01/01
PubMed
186 Khan S et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-&#x3BA;B pathway. Elife 2021 Dec;10
Khan S et al
2021/01/01
PubMed
187 Zech F et al. Spike residue 403 affects binding of coronavirus spikes to human ACE2. Nat Commun 2021 Nov;12(1):6855
Zech F et al
2021/01/01
PubMed
188 He X et al. A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerg Microbes Infect 2021 Dec;10(1):1555-1573
He X et al
2021/01/01
PubMed
189 Biji A et al. Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine 2021 Aug;70:103525
Biji A et al
2021/01/01
PubMed
190 Chen EC et al. Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Rep 2021 Aug;36(8):109604
Chen EC et al
2021/01/01
PubMed
191 Roberts DJ et al. A standardized definition of placental infection by SARS-CoV-2, a consensus statement from the National&#xA0;Institutes of Health/Eunice Kennedy Shriver National&#xA0;Institute of Child Health and Human Development&#xA0;SARS-CoV-2 Placen
Roberts DJ et al
2021/01/01
PubMed
192 Prelli Bozzo C et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021 Jul;12(1):4584
Prelli Bozzo C et al
2021/01/01
PubMed
193 Wong DWL et al. Multisystemic Cellular Tropism of SARS-CoV-2 in Autopsies of COVID-19 Patients. Cells 2021 Jul;10(8)
Wong DWL et al
2021/01/01
PubMed
194 Trimpert J et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep 2021 Aug;36(5):109493
Trimpert J et al
2021/01/01
PubMed
195 Pedrosa CDSG et al. Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res 2021 Jul;54:102436
Pedrosa CDSG et al
2021/01/01
PubMed
196 Lyonnais S et al. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep 2021 Jun;11(1):11885
Lyonnais S et al
2021/01/01
PubMed
197 Vandergaast R et al. IMMUNO-COV v2.0: Development and Validation of a High-Throughput Clinical Assay for Measuring SARS-CoV-2-Neutralizing Antibody Titers. mSphere 2021 Jun;6(3):e0017021
Vandergaast R et al
2021/01/01
PubMed
198 Tsukada A et al. A Kidney Transplant Patient Who Died of COVID-19-associated Severe Acute Respiratory Distress Syndrome. Intern Med 2021 Jul;60(14):2297-2300
Tsukada A et al
2021/01/01
PubMed
199 Ebisudani T et al. Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep 2021 Jun;35(10):109218
Ebisudani T et al
2021/01/01
PubMed
200 Teng Y et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021 Aug;29(8):2424-2440
Teng Y et al
2021/01/01
PubMed
201 Hayn M et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep 2021 05;35(7):109126
Hayn M et al
2021/01/01
PubMed
202 Deinhardt-Emmer S et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol 2021 Feb;95(10)
Deinhardt-Emmer S et al
2021/01/01
PubMed
203 Walker JM et al. COVID-19 Patients With CNS Complications and Neuropathologic Features of Acute Disseminated Encephalomyelitis and Acute Hemorrhagic Leukoencephalopathy. J Neuropathol Exp Neurol 2021 Jun;80(6):628-631
Walker JM et al
2021/01/01
PubMed
204 Casagrande M et al. Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. Br J Ophthalmol 2022 Sep;106(9):1313-1317
Casagrande M et al
2022/01/01
PubMed
205 de Alwis R et al. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Mol Ther 2021 Jun;29(6):1970-1983
de Alwis R et al
2021/01/01
PubMed
206 Khan S et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-&#x3BA;B pathway. bioRxiv 2021 Mar;
Khan S et al
2021/01/01
PubMed
207 Uemura K et al. MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2. Sci Rep 2021 03;11(1):5376
Uemura K et al
2021/01/01
PubMed
208 Dawson ED et al. Multiplexed, microscale, microarray-based serological assay for antibodies against all human-relevant coronaviruses. J Virol Methods 2021 May;291:114111
Dawson ED et al
2021/01/01
PubMed
209 Azad T et al. Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2&#xA0;S for viral entry. Mol Ther 2021 Jun;29(6):1984-2000
Azad T et al
2021/01/01
PubMed
210 Routhu NK et al. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 2021 Mar;54(3):542-556.e9
Routhu NK et al
2021/01/01
PubMed
211 Osipiuk J et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun 2021 Feb;12(1):743
Osipiuk J et al
2021/01/01
PubMed
212 Casagrande M et al. Presence of SARS-CoV-2 RNA in the Cornea of Viremic Patients With COVID-19. JAMA Ophthalmol 2021 Apr;139(4):383-388
Casagrande M et al
2021/01/01
PubMed
213 Bayati A et al. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021;296:100306
Bayati A et al
2021/01/01
PubMed
214 Chen Y et al. Quantitative and Ultrasensitive In-situ Immunoassay Technology for SARS-CoV-2 Detection in Saliva. Res Sq 2021 Jan;
Chen Y et al
2021/01/01
PubMed
215 Yin X et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep 2021 Jan;34(2):108628
Yin X et al
2021/01/01
PubMed
216 Priori A et al. The Many Faces of Covid-19 at a Glance: A University Hospital Multidisciplinary Account From Milan, Italy. Front Public Health 2020;8:575029
Priori A et al
2020/01/01
PubMed
217 Stewart H et al. Tetherin antagonism by SARS-CoV-2 enhances virus release: multiple mechanisms including ORF3a-mediated defective retrograde traffic. bioRxiv 2022 Dec;
Stewart H et al
2022/01/01
PubMed
218 Wang C et al. ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell 2021 Feb;28(2):331-342.e5
Wang C et al
2021/01/01
PubMed
219 Mirabelli C et al. Morphological Cell Profiling of SARS-CoV-2 Infection Identifies Drug Repurposing Candidates for COVID-19. bioRxiv 2020 Dec;
Mirabelli C et al
2020/01/01
PubMed
220 Tada T et al. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020 12;33(12):108528
Tada T et al
2020/01/01
PubMed
221 Cortese M et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 2020 Dec;28(6):853-866.e5
Cortese M et al
2020/01/01
PubMed
222 Kr端ger J et al. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2021;11(4):935-948
Kr端ger J et al
2021/01/01
PubMed
223 Jocher G et al. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion. EMBO Rep 2022 Jun;23(6):e54305
Jocher G et al
2022/01/01
PubMed
224 Cao L et al. The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Sci Transl Med 2022 Sep;14(661):eabm7621
Cao L et al
2022/01/01
PubMed
225 Fielding CA et al. SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies. Elife 2022 May;11
Fielding CA et al
2022/01/01
PubMed
226 Zeng W et al. Evidence of Infection of Human Embryonic Stem Cells by SARS-CoV-2. Front Cell Infect Microbiol 2022;12:911313
Zeng W et al
2022/01/01
PubMed
227 Zhang S et al. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol Immunol 2022 Aug;19(8):872-882
Zhang S et al
2022/01/01
PubMed
228 Fujimoto D et al. Sputum characteristics of patients with severe COVID-19: report of two cases with immunocytochemical detection of SARS-CoV-2 spike protein. Med Mol Morphol 2022 Dec;55(4):316-322
Fujimoto D et al
2022/01/01
PubMed
229 Rappaport AR et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat Commun 2022 Jun;13(1):3289
Rappaport AR et al
2022/01/01
PubMed
230 Chen Y et al. Quantitative and ultrasensitive in situ immunoassay technology for SARS-CoV-2 detection in saliva. Sci Adv 2022 May;8(21):eabn3481
Chen Y et al
2022/01/01
PubMed
231 Kongsuphol P et al. A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. Commun Med (Lond) 2021;1:46
Kongsuphol P et al
2021/01/01
PubMed
232 Plan竪s R et al. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol Cell 2022 Jul;82(13):2385-2400.e9
Plan竪s R et al
2022/01/01
PubMed
233 Jennings BC et al. A weak COPI binding motif in the cytoplasmic tail of SARS-CoV-2 spike glycoprotein is necessary for its cleavage, glycosylation, and localization. FEBS Lett 2021 Jul;595(13):1758-1767
Jennings BC et al
2021/01/01
PubMed
234 Tang WF et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 2021 Jun;44(3):293-303
Tang WF et al
2021/01/01
PubMed
235 Limanaqi F et al. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024 Jan;57(1):2
Limanaqi F et al
2024/01/01
PubMed
236 Zorad S et al. Angiotensin I and II Stimulate Cell Invasion of SARS-CoV-2: Potential Mechanism via Inhibition of ACE2 Arm of RAS. Physiol Res 2024 Mar;73(1):27-35
Zorad S et al
2024/01/01
PubMed
237 Lee S et al. Assessing the impact of mRNA vaccination in chronic inflammatory murine model. NPJ Vaccines 2024 Feb;9(1):34
Lee S et al
2024/01/01
PubMed
238 Tang W-F et al. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024 Apr;68(4):e0095623
Tang W-F et al
2024/01/01
PubMed
239 Bolland W et al. High fusion and cytopathy of SARS-CoV-2 variant B.1.640.1. J Virol 2024 Jan;98(1):e0135123
Bolland W et al
2024/01/01
PubMed
240 T Iida et al., High-throughput Light-induced Immunoassay under One-minute Antibody-coating with Energy Saving Nanoparticle-imprinted Substrate, Research Square., 2024., ().,

PubMed
241 Lin CH et al. Inhibitory Efficacy of Main Components of <i>Scutellaria baicalensis</i> on the Interaction between Spike Protein of SARS-CoV-2 and Human Angiotensin-Converting Enzyme II. Int J Mol Sci 2024 Mar;25(5)
Lin CH et al
2024/01/01
PubMed
242 Inoue T et al. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024 Apr;27(4):109363
Inoue T et al
2024/01/01
PubMed
243 Zhang F et al. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. mBio 2024 Feb;15(2):e0167223
Zhang F et al
2024/01/01
PubMed
244 S Clever et al., Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection, Viruses., 2024., 16(3)., 417

PubMed
245 Muñoz-Alía MÁ et al. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024 Feb;
Muñoz-Alía MÁ et al
2024/01/01
PubMed
246 Tsumita T et al. Viral uptake and pathophysiology of the lung endothelial cells in age-associated severe SARS-CoV-2 infection models. Aging Cell 2024 Feb;23(2):e14050
Tsumita T et al
2024/01/01
PubMed
247 Zuo Y et al. Vitamin C promotes ACE2 degradation and protects against SARS-CoV-2 infection. EMBO Rep 2023 Apr;24(4):e56374
Zuo Y et al
2023/01/01
PubMed
248 Normandin E et al. Neuropathological features of SARS-CoV-2 delta and omicron variants. J Neuropathol Exp Neurol 2023 Mar;82(4):283-295
Normandin E et al
2023/01/01
PubMed
249 Bhargava A et al. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-&#x3BA;B pathway toward SARS-CoV-2. iScience 2023 Dec;26(12):108449
Bhargava A et al
2023/01/01
PubMed
250 Fujita S et al. Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to <i>Rhinolophus</i> bat ACE2. J Virol 2023 Oct;97(10):e0099023
Fujita S et al
2023/01/01
PubMed
251 Kimura I et al. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023 Oct;97(10):e0101123
Kimura I et al
2023/01/01
PubMed
252 Kachko A et al. Vaccine-associated respiratory pathology correlates with viral clearance and protective immunity after immunization with self-amplifying RNA expressing the spike (S) protein of SARS-CoV-2 in mouse models. Vaccine 2024 Jan;42(3):608-619
Kachko A et al
2024/01/01
PubMed
253 M Nogami et al., Anti-Spike Protein Antibody Immunoreactivity Is Widely Expressed in Human Lymph Nodes with or without Pfizer-BioNTech or Moderna mRNA Vaccination in Non-Infected Individuals., Research Square., 2023.,

PubMed
254 Carvalhal F et al. Evaluation of the Cytotoxic and Antiviral Effects of Small Molecules Selected by In Silico Studies as Inhibitors of SARS-CoV-2 Cell Entry. Molecules 2023 Oct;28(20)
Carvalhal F et al
2023/01/01
PubMed
255 L辿cuyer D et al. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front Immunol 2023;14:1270081
L辿cuyer D et al
2023/01/01
PubMed
256 Zhang P et al. Increased neutralization potency and breadth elicited by a SARS-CoV-2 mRNA vaccine forming virus-like particles. Proc Natl Acad Sci U S A 2023 Jul;120(29):e2305896120
Zhang P et al
2023/01/01
PubMed
257 Streblow DN et al. Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology. Nat Commun 2023 Nov;14(1):7062
Streblow DN et al
2023/01/01
PubMed
258 Cui Q et al. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (2020) 2023 Oct;4(5):e400
Cui Q et al
2023/01/01
PubMed
259 Yang CF et al. Human ACE2 protein is a molecular switch controlling the mode of SARS-CoV-2 transmission. J Biomed Sci 2023 Oct;30(1):87
Yang CF et al
2023/01/01
PubMed
260 Cottignies-Calamarte A et al. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques. STAR Protoc 2023 Dec;4(4):102593
Cottignies-Calamarte A et al
2023/01/01
PubMed
261 Ahmed N et al. microRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host&#39;s Lipid Microenvironment. Viruses 2023 Sep;15(9)
Ahmed N et al
2023/01/01
PubMed
262 Sauve F et al. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023 Oct;96:104784
Sauve F et al
2023/01/01
PubMed
263 Di Primio C et al. Severe acute respiratory syndrome coronavirus 2 infection leads to Tau pathological signature in neurons. PNAS Nexus 2023 Sep;2(9):pgad282
Di Primio C et al
2023/01/01
PubMed
264 Ullah TR et al. Pharmacological inhibition of TBK1/IKK&#x3B5; blunts immunopathology in a murine model of SARS-CoV-2 infection. Nat Commun 2023 Sep;14(1):5666
Ullah TR et al
2023/01/01
PubMed
265 N Ahmed et al., microRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host’s Lipid Microenvironment., Viruses., 2023., 15., 9., 1921

PubMed
266 Giannakopoulos S et al. In vitro evidence against productive SARS-CoV-2 infection of human testicular cells: Bystander effects of infection mediate testicular injury. bioRxiv 2022 Sep;
Giannakopoulos S et al
2022/01/01
PubMed
267 Vaddadi K et al. Cellular microRNAs target SARS-CoV-2 spike protein and restrict viral replication. Am J Physiol Cell Physiol 2023 Aug;325(2):C420-C428
Vaddadi K et al
2023/01/01
PubMed
268 Swain J et al. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells. iScience 2023 Aug;26(8):107384
Swain J et al
2023/01/01
PubMed
269 Narayan R et al. Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus in&#xA0;vivo. Cell Rep Med 2023 Aug;4(8):101127
Narayan R et al
2023/01/01
PubMed
270 T Deckert-Gaudig et al., Identification of RNA-containing virus particles using a triple correlative morphological and microscopic approach., ChemRxiv., 2023.,

PubMed
271 Hornung F et al. Thoracic adipose tissue contributes to severe virus infection of the lung. Int J Obes (Lond) 2023 Nov;47(11):1088-1099
Hornung F et al
2023/01/01
PubMed
272 Sandra E. Reznik et al., SARS-CoV-2 Infection in Unvaccinated High-Risk Pregnant Women in the Bronx, NY, USA Is Associated with Decreased Apgar Scores and Placental Villous Infarcts., Biomolecules., 2023., 13., 8., 1224

PubMed
273 Azarias Da Silva M et al. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. Sci Adv 2023 Aug;9(31):eadg2122
Azarias Da Silva M et al
2023/01/01
PubMed
274 Zhang F et al. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. bioRxiv 2023 Jun;
Zhang F et al
2023/01/01
PubMed
275 Sayedahmed EE et al. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023 Sep;30:194-207
Sayedahmed EE et al
2023/01/01
PubMed
276 Rinschen MM et al. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney. Sci Signal 2022 Nov;15(762):eabo7940
Rinschen MM et al
2022/01/01
PubMed
277 Yang J et al. Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nat Microbiol 2023 Jan;8(1):121-134
Yang J et al
2023/01/01
PubMed
278 Xu D et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023 Jul;619(7971):819-827
Xu D et al
2023/01/01
PubMed
279 Tanikawa T et al. Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules 2022 Aug;27(17)
Tanikawa T et al
2022/01/01
PubMed
280 Pillai S et al. A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells. Res Sq 2023 May;
Pillai S et al
2023/01/01
PubMed
281 Kuzmina A et al. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 2023 Jun;9(6):e16750
Kuzmina A et al
2023/01/01
PubMed
282 Diray-Arce J et al. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023 Jun;4(6):101079
Diray-Arce J et al
2023/01/01
PubMed
283 Zhang YM et al. Clinicopathological and immunological features of new onset kidney disease: a rare event after SARS-CoV-2 vaccination. Natl Sci Rev 2023 May;10(5):nwac034
Zhang YM et al
2023/01/01
PubMed
284 et al., Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity., 2023.,

PubMed
285 Prahl M et al. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy. Nat Commun 2022 Jul;13(1):4422
Prahl M et al
2022/01/01
PubMed
286 Sung PS et al. Inhibition of SARS-CoV-2-mediated thromboinflammation by CLEC2.Fc. EMBO Mol Med 2023 Jul;15(7):e16351
Sung PS et al
2023/01/01
PubMed
287 Alena Reguzova et al., A novel multi-antigenic parapoxvirus-based vaccine demonstrates efficacy in protecting hamsters and non-human primates against SARS-CoV-2 challenge., Research Square., 2023.,

PubMed
288 Park SB et al. SARS-CoV-2 omicron variants harbor spike protein mutations responsible for their attenuated fusogenic phenotype. Commun Biol 2023 May;6(1):556
Park SB et al
2023/01/01
PubMed
289 Tsuji S et al. SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nat Aging 2022 Feb;2(2):115-124
Tsuji S et al
2022/01/01
PubMed
290 Asiedu SO et al. Mycolactone: A Broad Spectrum Multitarget Antiviral Active in the Picomolar Range for COVID-19 Prevention and Cure. Int J Mol Sci 2023 Apr;24(8)
Asiedu SO et al
2023/01/01
PubMed
291 Satish Pillai et al., A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells., Research Square., 2023.,

PubMed
292 Lebrun L et al. SARS-Cov-2 infection and neuropathological findings: a report of 18 cases and review of the literature. Acta Neuropathol Commun 2023 May;11(1):78
Lebrun L et al
2023/01/01
PubMed
293 Lorenzo MM et al. Vaccinia Virus Strain MVA Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Glycoprotein Induces Robust Protection and Prevents Brain Infection in Mouse and Hamster Models. Vaccines (Basel) 2023 May;11(5)
Lorenzo MM et al
2023/01/01
PubMed
294 Swain LA et al. Acute severe hepatitis as a presenting symptom in clinically stable patients admitted with SARS-CoV-2 Omicron infection. Hepatol Commun 2023 Apr;7(4)
Swain LA et al
2023/01/01
PubMed
295 Mohammad TSH et al. In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity. Int J Mol Sci 2023 Mar;24(6)
Mohammad TSH et al
2023/01/01
PubMed
296 Metzler M et al. SARS-CoV-2 Variants Show Different Host Cell Proteome Profiles With Delayed Immune Response Activation in Omicron-Infected Cells. Mol Cell Proteomics 2023 May;22(5):100537
Metzler M et al
2023/01/01
PubMed
297 Horndler L et al. Decreased breadth of the antibody response to the spike protein of SARS-CoV-2 after repeated vaccination. Front Immunol 2023;14:1157263
Horndler L et al
2023/01/01
PubMed
298 Bussani R et al. Persistent SARS-CoV-2 infection in patients seemingly recovered from COVID-19. J Pathol 2023 Mar;259(3):254-263
Bussani R et al
2023/01/01
PubMed
299 Furusawa Y et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 2023 May;91:104561
Furusawa Y et al
2023/01/01
PubMed
300 Luo Y et al. High-throughput screening of spike variants uncovers the key residues that alter the affinity and antigenicity of SARS-CoV-2. Cell Discov 2023 Apr;9(1):40
Luo Y et al
2023/01/01
PubMed
301 Piranej S et al. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor. bioRxiv 2023 Feb;
Piranej S et al
2023/01/01
PubMed
302 Meseguer S et al. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023;14:1066493
Meseguer S et al
2023/01/01
PubMed
303 Brogna C et al. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci 2023 Feb;24(4)
Brogna C et al
2023/01/01
PubMed
304 Ham Y et al. The SpACE-CCM: A facile and versatile cell culture medium-based biosensor for detection of SARS-CoV-2 spike-ACE2 interaction. Biosens Bioelectron 2023 May;227:115169
Ham Y et al
2023/01/01
PubMed
305 Cappelletto A et al. SARS-CoV-2 Spike protein activates TMEM16F-mediated platelet procoagulant activity. Front Cardiovasc Med 2022;9:1013262
Cappelletto A et al
2022/01/01
PubMed
306 Massimo M et al. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. Brain 2023 Mar;146(3):1175-1185
Massimo M et al
2023/01/01
PubMed
307 Wu CT et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023 Jan;186(1):112-130.e20
Wu CT et al
2023/01/01
PubMed
308 Muñoz-Alía MÁ et al. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. bioRxiv 2022 Dec;
Muñoz-Alía MÁ et al
2022/01/01
PubMed
309 Reyes S et al. Metal organic framework encapsulated tamavidin-Gluc reporter: application in COVID-19 spike antigen bioluminescent immunoassay. Sens Diagn 2022 Nov;1(6):1198-1208
Reyes S et al
2022/01/01
PubMed
310 Biering SB et al. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-&#x3B2; signaling. Nat Commun 2022 Dec;13(1):7630
Biering SB et al
2022/01/01
PubMed
311 Meyer Zu Natrup C et al. Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. J Clin Invest 2022 Dec;132(24)
Meyer Zu Natrup C et al
2022/01/01
PubMed
312 Peng R et al. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep 2022 Dec;23(12):e55839
Peng R et al
2022/01/01
PubMed
313 Petros BA et al. Multimodal surveillance of SARS-CoV-2 at a university enables development of a robust outbreak response framework. Med 2022 Dec;3(12):883-900.e13
Petros BA et al
2022/01/01
PubMed
314 Gupta RK et al. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral&#xA0;spread. EMBO J 2022 Nov;41(22):e111653
Gupta RK et al
2022/01/01
PubMed
315 Prout A et al. Functional profiling of Covid 19 vaccine candidate by flow virometry. Vaccine 2022 Sep;40(37):5529-5536
Prout A et al
2022/01/01
PubMed
316 Takeda R et al. Antiviral effect of cetylpyridinium chloride in mouthwash on SARS-CoV-2. Sci Rep 2022 Aug;12(1):14050
Takeda R et al
2022/01/01
PubMed
317 Su P et al. Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice. Mol Brain 2022 Aug;15(1):71
Su P et al
2022/01/01
PubMed
318 Narayan R et al. Efficient elimination of airborne pathogens: a study on&#xA0;aerosolized Mycobacterium tuberculosis and SARS-CoV-2 using ZeBox technology. J Hosp Infect 2022 Nov;129:17-21
Narayan R et al
2022/01/01
PubMed
319 Mei S et al. Immunogenicity of a vaccinia virus-based severe acute respiratory syndrome coronavirus 2 vaccine candidate. Front Immunol 2022;13:911164
Mei S et al
2022/01/01
PubMed
320 Macedo S et al. Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. Eur Thyroid J 2022 Aug;11(4)
Macedo S et al
2022/01/01
PubMed
321 Gao SY et al. Nanocell COVID-19 vaccine triggers a novel immune response pathway producing high-affinity antibodies which neutralize all variants of concern. Front Immunol 2022;13:1038562
Gao SY et al
2022/01/01
PubMed
322 Normandin E et al. High-depth sequencing characterization of viral dynamics across tissues in fatal COVID-19 reveals compartmentalized infection. Nat Commun 2023 Feb;14(1):574
Normandin E et al
2023/01/01
PubMed
323 Chen YT et al. Methotrexate inhibition of SARS-CoV-2 entry, infection and inflammation revealed by bioinformatics approach and a hamster model. Front Immunol 2022;13:1080897
Chen YT et al
2022/01/01
PubMed
324 Fraternale A et al. Targeting SARS-CoV-2 by synthetic dual-acting thiol compounds that inhibit Spike/ACE2 interaction and viral protein production. FASEB J 2023 Feb;37(2):e22741
Fraternale A et al
2023/01/01
PubMed
325 Ogura H et al. Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19. Nat Commun 2022 Dec;13(1):7063
Ogura H et al
2022/01/01
PubMed
326 Kimura I et al. The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience 2022 Dec;25(12):105720
Kimura I et al
2022/01/01
PubMed
327 Kim K et al. Translation suppression underlies the restrained COVID-19 mRNA vaccine response in the high-risk immunocompromised group. Front Immunol 2022;13:1020165
Kim K et al
2022/01/01
PubMed
328 Lista MJ et al. The P681H Mutation in the Spike Glycoprotein of the Alpha Variant of SARS-CoV-2 Escapes IFITM Restriction and Is Necessary for Type I Interferon Resistance. J Virol 2022 Dec;96(23):e0125022
Lista MJ et al
2022/01/01
PubMed
329 Nasser H et al. Monitoring fusion kinetics of viral and target cell membranes in living cells using a SARS-CoV-2 spike-protein-mediated membrane fusion assay. STAR Protoc 2022 Dec;3(4):101773
Nasser H et al
2022/01/01
PubMed
330 Lu Y et al. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation. Mol Biol Cell 2022 Dec;33(14):ar147
Lu Y et al
2022/01/01
PubMed
331 Tan TS et al. Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike. J Virol 2022 Oct;96(20):e0116222
Tan TS et al
2022/01/01
PubMed
332 Kiyan Y et al. Calcium dobesilate reduces SARS-CoV-2 entry into endothelial cells by inhibiting virus binding to heparan sulfate. Sci Rep 2022 Oct;12(1):16878
Kiyan Y et al
2022/01/01
PubMed
333 Weil T et al. Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses. JACS Au 2022 Sep;2(9):2187-2202
Weil T et al
2022/01/01
PubMed
334 Kumar CS et al. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022 Oct;8(10):2119-2132
Kumar CS et al
2022/01/01
PubMed
335 Vanhulle E et al. Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern. Front Cell Infect Microbiol 2022;12:989534
Vanhulle E et al
2022/01/01
PubMed
336 Aicher SM et al. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022 Jul;96(14):e0060822
Aicher SM et al
2022/01/01
PubMed
337 Shimizu K et al. A single immunization with cellular vaccine confers dual protection against SARS-CoV-2 and cancer. Cancer Sci 2022 Aug;113(8):2536-2547
Shimizu K et al
2022/01/01
PubMed
338 Bullock HA et al. Probable vertical transmission of Alpha variant of concern (B.1.1.7) with evidence of SARS-CoV-2 infection in the syncytiotrophoblast, a case report. Front Med (Lausanne) 2022;9:1099408
Bullock HA et al
2022/01/01
PubMed
339 Kong W et al. Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neurons. mBio 2022 Dec;13(6):e0230822
Kong W et al
2022/01/01
PubMed
340 Yaron TM et al. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Sci Signal 2022 Oct;15(757):eabm0808
Yaron TM et al
2022/01/01
PubMed
341 Song J et al. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biol 2022 Oct;20(10):e3001805
Song J et al
2022/01/01
PubMed
342 Zhou Y et al. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol 2023 Jan;41(1):128-139
Zhou Y et al
2023/01/01
PubMed
343 Vanslambrouck JM et al. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022 Oct;13(1):5943
Vanslambrouck JM et al
2022/01/01
PubMed
344 John SP et al. Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep 2022 Oct;41(1):111441
John SP et al
2022/01/01
PubMed
345 Agostinis C et al. SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability. Front Immunol 2022;13:957224
Agostinis C et al
2022/01/01
PubMed
346 Giannakopoulos S et al. In vitro evidence against productive SARS-CoV-2 infection of human testicular cells: Bystander effects of infection mediate testicular injury. PLoS Pathog 2023 May;19(5):e1011409
Giannakopoulos S et al
2023/01/01
PubMed
347 Drewry DH et al. Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of &#x3B2;-Coronaviruses. J Med Chem 2022 Oct;65(19):12860-12882
Drewry DH et al
2022/01/01
PubMed
348 Wee LE et al. Detection of viable SARS-CoV-2 in deep respiratory specimens despite negative nasopharyngeal SARS-CoV-2 RT-PCR: Occult COVID-19 as an unsuspected cause of pulmonary infiltrates in immunocompromised patients. IDCases 2022;30:e01611
Wee LE et al
2022/01/01
PubMed
349 Gourdelier M et al. Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles. Sci Rep 2022 Aug;12(1):14651
Gourdelier M et al
2022/01/01
PubMed
350 Jin JC et al. SARS CoV-2 detected in neonatal stool remote from maternal COVID-19 during pregnancy. Pediatr Res 2023 Apr;93(5):1375-1382
Jin JC et al
2023/01/01
PubMed
351 Hawman DW et al. Replicating RNA platform enables rapid response to the SARS-CoV-2 Omicron variant and elicits enhanced protection in na&#xEF;ve hamsters compared to ancestral vaccine. EBioMedicine 2022 Sep;83:104196
Hawman DW et al
2022/01/01
PubMed
352 Silva-Aguiar RP et al. SARS-CoV-2 spike protein inhibits megalin-mediated albumin endocytosis in proximal tubule epithelial cells. Biochim Biophys Acta Mol Basis Dis 2022 Dec;1868(12):166496
Silva-Aguiar RP et al
2022/01/01
PubMed
353 Tien CF et al. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience 2022 Aug;25(8):104709
Tien CF et al
2022/01/01
PubMed
354 Baumeier C et al. Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. Int J Mol Sci 2022 Jun;23(13)
Baumeier C et al
2022/01/01
PubMed
355 Park H et al. TMED3 Complex Mediates ER Stress-Associated Secretion of CFTR, Pendrin, and SARS-CoV-2 Spike. Adv Sci (Weinh) 2022 Aug;9(24):e2105320
Park H et al
2022/01/01
PubMed
356 Sefik E et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022 Jun;606(7914):585-593
Sefik E et al
2022/01/01
PubMed
357 Hassler L et al. Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clin J Am Soc Nephrol 2021 Jun;
Hassler L et al
2021/01/01
PubMed
358 Porter LM et al. Cigarette smoke preferentially induces full length ACE2 expression in differentiated primary human airway cultures but does not alter the efficiency of cellular SARS-CoV-2 infection. Heliyon 2023 Mar;9(3):e14383
Porter LM et al
2023/01/01
PubMed
359 Zanon M et al. Liver pathology in COVID-19 related death and leading role of autopsy in the pandemic. World J Gastroenterol 2023 Jan;29(1):200-220
Zanon M et al
2023/01/01
PubMed
360 Yamamoto Y et al. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. Int J Mol Sci 2022 Dec;24(1)
Yamamoto Y et al
2022/01/01
PubMed
361 Yamamoto Y et al. SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Int J Mol Sci 2022 Dec;23(24)
Yamamoto Y et al
2022/01/01
PubMed
362 Yeh CT et al. Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines 2022 Nov;10(11)
Yeh CT et al
2022/01/01
PubMed
363 Chan JF et al. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in&#xA0;vivo. Cell Rep Med 2022 Oct;3(10):100774
Chan JF et al
2022/01/01
PubMed
364 Gellenoncourt S et al. The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. J Virol 2022 Oct;96(19):e0130122
Gellenoncourt S et al
2022/01/01
PubMed
365 Wong YP et al. SARS-CoV-2 Infection in Pregnancy: Placental Histomorphological Patterns, Disease Severity and Perinatal Outcomes. Int J Environ Res Public Health 2022 Aug;19(15)
Wong YP et al
2022/01/01
PubMed
366 Sim JR et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep 2022 Jul;40(3):111117
Sim JR et al
2022/01/01
PubMed
367 Jungwirth J et al. D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir. Int J Mol Sci 2022 Jun;23(13)
Jungwirth J et al
2022/01/01
PubMed
368 Wettstein L et al. Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun Biol 2022 Jul;5(1):681
Wettstein L et al
2022/01/01
PubMed
369 Willett BJ et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022 Aug;7(8):1161-1179
Willett BJ et al
2022/01/01
PubMed
370 Mitsunaga M et al. Antimicrobial strategy for targeted elimination of different microbes, including bacterial, fungal and viral pathogens. Commun Biol 2022 Jul;5(1):647
Mitsunaga M et al
2022/01/01
PubMed
371 Escalera A et al. Protocol to isolate and assess spike protein cleavage in SARS-CoV-2 variants obtained from clinical COVID-19 samples. STAR Protoc 2022 Sep;3(3):101502
Escalera A et al
2022/01/01
PubMed
372 Zhou Y et al. A comprehensive SARS-CoV-2-human protein-protein interactome network identifies pathobiology and host-targeting therapies for COVID-19. Res Sq 2022 Jun;
Zhou Y et al
2022/01/01
PubMed
373 Kawano H et al. Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger Ribonucleic Acid Vaccination. Intern Med 2022 Aug;61(15):2319-2325
Kawano H et al
2022/01/01
PubMed
374 Roessler J et al. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023 Oct;11(11)
Roessler J et al
2023/01/01
PubMed
375 Hagelauer E et al. Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists. Viruses 2023 Nov;15(12)
Hagelauer E et al
2023/01/01
PubMed
376 Stewart H et al. Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release. EMBO Rep 2023 Dec;24(12):e57224
Stewart H et al
2023/01/01
PubMed
377 Styles CT et al. Propylene glycol inactivates respiratory viruses and prevents airborne transmission. EMBO Mol Med 2023 Dec;15(12):e17932
Styles CT et al
2023/01/01
PubMed
378 Angioni R et al. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Rep Med 2023 Nov;4(11):101266
Angioni R et al
2023/01/01
PubMed
379 Dey D et al. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023 Dec;14(1):8358
Dey D et al
2023/01/01
PubMed
  • No.: 1
  • 文献情報:
    Carossino M et al. Detection of SARS-CoV-2 by RNAscope<sup>&#xAE;</sup>in situ hybridization and immunohistochemistry techniques. Arch. Virol. 2020 Aug;
    Carossino M et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 2
  • 文献情報:
    Ko CJ et al. Perniosis during the COVID-19 pandemic: Negative Anti-SARS-CoV-2 Immunohistochemistry in Six Patients and Comparison to Perniosis Before the Emergence of SARS-CoV-2. J. Cutan. Pathol. 2020 Aug;
    Ko CJ et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 3
  • 文献情報:
    Appelberg S et al. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect 2020 Dec;9(1):1748-1760
    Appelberg S et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 4
  • 文献情報:
    Bradley BT et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet 2020 08;396(10247):320-332
    Bradley BT et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 5
  • 文献情報:
    Kudose S et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020 Jul;
    Kudose S et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 6
  • 文献情報:
    Pulinx B et al. Vertical transmission of SARS-CoV-2 infection and preterm birth. Eur. J. Clin. Microbiol. Infect. Dis. 2020 Jul;
    Pulinx B et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 7
  • 文献情報:
    Prieto-P辿rez L et al. Histiocytic hyperplasia with hemophagocytosis and acute alveolar damage in COVID-19 infection. Mod. Pathol. 2020 Jul;
    Prieto-P辿rez L et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 8
  • 文献情報:
    Santonja C et al. COVID-19 chilblain-like lesion: immunohistochemical demonstration of SARS-CoV-2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain reaction-negative patient. Br. J. Dermatol. 2020 Jun;
    Santonja C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 9
  • 文献情報:
    Colmenero I et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br. J. Dermatol. 2020 Jun;
    Colmenero I et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 10
  • 文献情報:
    Lip KM et al. Monoclonal antibodies targeting the HR2 domain and the region immediately upstream of the HR2 of the S protein neutralize in vitro infection of severe acute respiratory syndrome coronavirus. J. Virol. 2006 Jan;80(2):941-50
    Lip KM et al
    2006/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 11
  • 文献情報:
    Yamada T et al. RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells. Nat Immunol 2021 May;
    Yamada T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 12
  • 文献情報:
    Kishimoto M et al. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein. Viruses 2021 02;13(3)
    Kishimoto M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 13
  • 文献情報:
    Roden AC et al. Comparison of In Situ Hybridization, Immunohistochemistry, and Reverse Transcription-Droplet Digital Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Testing in Tissue. Arch Pathol Lab Med 2021 07;
    Roden AC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 14
  • 文献情報:
    Liu G et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 2021 04;6(4):467-478
    Liu G et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 15
  • 文献情報:
    Huang N et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med 2021 05;27(5):892-903
    Huang N et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 16
  • 文献情報:
    Dicken SJ et al. Characterisation of B.1.1.7 and Pangolin coronavirus spike provides insights on the evolutionary trajectory of SARS-CoV-2. bioRxiv 2021 Mar;
    Dicken SJ et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 17
  • 文献情報:
    P辿rez A et al. IgA-Dominant Infection-Associated Glomerulonephritis Following SARS-CoV-2 Infection. Viruses 2021 03;13(4)
    P辿rez A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 18
  • 文献情報:
    Tang W.F. et al., Tang W.F., Biomedical Journal, 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 19
  • 文献情報:
    Winstone H et al. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. J Virol 2021 04;95(9)
    Winstone H et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 20
  • 文献情報:
    Monte-Serrano J et al. Granuloma annulare triggered by SARS-CoV-2 infection: Immunohistochemical staining. Dermatol Ther 2021 05;34(3):e14897
    Monte-Serrano J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 21
  • 文献情報:
    Azad T et al. SARS-CoV-2 S1 NanoBiT: A nanoluciferase complementation-based biosensor to rapidly probe SARS-CoV-2 receptor recognition. Biosens Bioelectron 2021 May;180:113122
    Azad T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 22
  • 文献情報:
    Yeung ML et al. Soluble ACE2-mediated cell entry of SARS-CoV-2 via interaction with proteins related to the renin-angiotensin system. Cell 2021 04;184(8):2212-2228.e12
    Yeung ML et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 23
  • 文献情報:
    Sharma P et al. Pathology of COVID-19-associated acute kidney injury. Clin Kidney J 2021 Mar;14(Suppl 1):i30-i39
    Sharma P et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 24
  • 文献情報:
    Cheng Y.W. et al., Cheng Y.W., bioRxiv, 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 25
  • 文献情報:
    Garc鱈a-Arriaza J et al. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike induce robust T- and B-cell immune responses and full efficacy in mice. J Virol 2021 Jan;
    Garc鱈a-Arriaza J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 26
  • 文献情報:
    Jang Y et al. Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep 2021 01;11(1):821
    Jang Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 27
  • 文献情報:
    Linehan L et al. SARS-CoV-2 placentitis: An uncommon complication of maternal COVID-19. Placenta 2021 01;104:261-266
    Linehan L et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 28
  • 文献情報:
    Lu-Culligan A et al. SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at the maternal-fetal interface. medRxiv 2021 Jan;
    Lu-Culligan A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 29
  • 文献情報:
    Zhou H et al. B.1.526 SARS-CoV-2 variants identified in New York City are neutralized by vaccine-elicited and therapeutic monoclonal antibodies. bioRxiv 2021 Mar;
    Zhou H et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 30
  • 文献情報:
    Lamers MM et al. Human airway cells prevent SARS-CoV-2 multibasic cleavage site cell culture adaptation. Elife 2021 04;10
    Lamers MM et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 31
  • 文献情報:
    Wang L et al. Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein. Theranostics 2021;11(2):649-664
    Wang L et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 32
  • 文献情報:
    Jang Y et al. Comparison of Antiviral Activity of Gemcitabine with 2&#39;-Fluoro-2&#39;-Deoxycytidine and Combination Therapy with Remdesivir against SARS-CoV-2. Int J Mol Sci 2021 Feb;22(4)
    Jang Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 33
  • 文献情報:
    Di Teodoro G et al. SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Vet Microbiol 2021 Jan;252:108933
    Di Teodoro G et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 34
  • 文献情報:
    Welsh E et al. SARS-CoV-2 spike protein positivity in pityriasis rosea-like and urticaria-like rashes of COVID-19. Br J Dermatol 2021 06;184(6):1194-1195
    Welsh E et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 35
  • 文献情報:
    Rebendenne A et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol 2021 Jan;
    Rebendenne A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 36
  • 文献情報:
    Ozono S et al. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 2021 02;12(1):848
    Ozono S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 37
  • 文献情報:
    Tada T et al. Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 2021 Feb;
    Tada T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 38
  • 文献情報:
    Song E et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021 03;218(3)
    Song E et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 39
  • 文献情報:
    Chiuppesi F et al. Development of a Synthetic Poxvirus-Based SARS-CoV-2 Vaccine. bioRxiv 2020 Jul;
    Chiuppesi F et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 40
  • 文献情報:
    Lokugamage KG et al. SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv 2020 Apr;
    Lokugamage KG et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 41
  • 文献情報:
    Havranek KE et al. SARS-CoV-2 Spike Alterations Enhance Pseudoparticle Titers and Replication-Competent VSV-SARS-CoV-2 Virus. Viruses 2020 12;12(12)
    Havranek KE et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 42
  • 文献情報:
    Bernard I et al. Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses 2020 12;13(1)
    Bernard I et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 43
  • 文献情報:
    Vandergaast R et al. Development and validation of IMMUNO-COV&#x2122;: a high-throughput clinical assay for detecting antibodies that neutralize SARS-CoV-2. bioRxiv 2020 May;
    Vandergaast R et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 44
  • 文献情報:
    Gao C et al. SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors. bioRxiv 2020 Jul;
    Gao C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 45
  • 文献情報:
    Heaton BE et al. SRSF protein kinases 1 and 2 are essential host factors for human coronaviruses including SARS-CoV-2. bioRxiv 2020 Aug;
    Heaton BE et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 46
  • 文献情報:
    Oguntuyo KY et al. Quantifying absolute neutralization titers against SARS-CoV-2 by a standardized virus neutralization assay allows for cross-cohort comparisons of COVID-19 sera. medRxiv 2020 Aug;
    Oguntuyo KY et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 47
  • 文献情報:
    Drayman N et al. Drug repurposing screen identifies masitinib as a 3CLpro inhibitor that blocks replication of SARS-CoV-2 <i>in vitro</i>. bioRxiv 2020 Sep;
    Drayman N et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 48
  • 文献情報:
    Olagnier D et al. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020 10;11(1):4938
    Olagnier D et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 49
  • 文献情報:
    Dalskov L et al. SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep 2020 12;21(12):e51252
    Dalskov L et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 50
  • 文献情報:
    Pellegrini L et al. SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell 2020 12;27(6):951-961.e5
    Pellegrini L et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 51
  • 文献情報:
    Katsura H et al. Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dysfunction. Cell Stem Cell 2020 12;27(6):890-904.e8
    Katsura H et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 52
  • 文献情報:
    Li X et al. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles in cellular models. bioRxiv 2020 Oct;
    Li X et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 53
  • 文献情報:
    Plescia CB et al. SARS-CoV-2 viral budding and entry can be modeled using BSL-2 level virus-like particles. J Biol Chem 2020 Nov;
    Plescia CB et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 54
  • 文献情報:
    Chiuppesi F et al. Development of a multi-antigenic SARS-CoV-2 vaccine candidate using a synthetic poxvirus platform. Nat Commun 2020 11;11(1):6121
    Chiuppesi F et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 55
  • 文献情報:
    Ng JH et al. Pathophysiology and Pathology of Acute Kidney Injury in Patients With COVID-19. Adv Chronic Kidney Dis 2020 09;27(5):365-376
    Ng JH et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 56
  • 文献情報:
    Swann H et al. Minimal system for assembly of SARS-CoV-2 virus like particles. Sci Rep 2020 12;10(1):21877
    Swann H et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 57
  • 文献情報:
    Huang KY et al. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol Med 2021 01;13(1):e12828
    Huang KY et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 58
  • 文献情報:
    Zhao CL et al. Pathological findings in the postmortem liver of patients with coronavirus disease 2019 (COVID-19). Hum Pathol 2021 03;109:59-68
    Zhao CL et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 59
  • 文献情報:
    Valk JE et al. Detection of SARS-CoV-2 in placental but not fetal tissues in the second trimester. J Perinatol 2021 05;41(5):1184-1186
    Valk JE et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 60
  • 文献情報:
    Nunes-Santos CJ et al. N-Glycan Modification in Covid-19 Pathophysiology: In vitro Structural Changes with Limited Functional Effects. J Clin Immunol 2021 02;41(2):335-344
    Nunes-Santos CJ et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 61
  • 文献情報:
    Wei C et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat Metab 2020 12;2(12):1391-1400
    Wei C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 62
  • 文献情報:
    Hattori SI et al. GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. mBio 2020 08;11(4)
    Hattori SI et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 63
  • 文献情報:
    Boix-Vilanova J et al. Grover-like skin eruption: another cutaneous manifestation in a COVID-19 patient. Int J Dermatol 2020 Oct;59(10):1290-1292
    Boix-Vilanova J et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 64
  • 文献情報:
    Gallicano GI et al. Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility. Gene Ther 2020 Nov;
    Gallicano GI et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 65
  • 文献情報:
    Bussani R et al. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine 2020 Nov;61:103104
    Bussani R et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 66
  • 文献情報:
    Varela Barca L et al. An unexplained death after routine cardiac surgery: how long have we dealt with coronavirus disease 2019? Interact Cardiovasc Thorac Surg 2020 12;31(6):904-905
    Varela Barca L et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 67
  • 文献情報:
    da S G Pedrosa C et al. Non-permissive SARS-CoV-2 infection of neural cells in the developing human brain and neurospheres. bioRxiv 2020 Oct;
    da S G Pedrosa C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 68
  • 文献情報:
    Lokugamage KG et al. Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. J Virol 2020 11;94(23)
    Lokugamage KG et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 69
  • 文献情報:
    Xia H et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 2020 10;33(1):108234
    Xia H et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 70
  • 文献情報:
    Chiuppesi F et al. Development of a Multi-Antigenic SARS-CoV-2 Vaccine Using a Synthetic Poxvirus Platform. Res Sq 2020 Jul;
    Chiuppesi F et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 71
  • 文献情報:
    Andina D et al. Suspected COVID-19-related reticulated purpura of the soles in an infant. Pediatr Dermatol 2021 Jan;38(1):301-303
    Andina D et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 72
  • 文献情報:
    Szabolcs M et al. Identification of Immunohistochemical Reagents for In Situ Protein Expression Analysis of Coronavirus-associated Changes in Human Tissues. Appl Immunohistochem Mol Morphol 2021 01;29(1):5-12
    Szabolcs M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 73
  • 文献情報:
    Clausen TM et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020 11;183(4):1043-1057.e15
    Clausen TM et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 74
  • 文献情報:
    Matschke J et al. Neuropathology of patients with COVID-19 in Germany: a post-mortem case series. Lancet Neurol 2020 11;19(11):919-929
    Matschke J et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 75
  • 文献情報:
    Goodlet KJ et al. COVID-19 in a lung transplant recipient: Exploring the diagnostic role of circulating exosomes and the clinical impact of advanced immunosuppression. Transpl Infect Dis 2021 Apr;23(2):e13480
    Goodlet KJ et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 76
  • 文献情報:
    Gambichler T et al. SARS-CoV-2 spike protein is present in both endothelial and eccrine cells of a chilblain-like skin lesion. J Eur Acad Dermatol Venereol 2021 Mar;35(3):e187-e189
    Gambichler T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 77
  • 文献情報:
    Borczuk AC et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol 2020 11;33(11):2156-2168
    Borczuk AC et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 78
  • 文献情報:
    Torrelo A et al. Erythema multiforme-like lesions in children and COVID-19. Pediatr Dermatol 2020 May;37(3):442-446
    Torrelo A et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 79
  • 文献情報:
    Cheng YW et al. D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Virus Titer via Enhanced Furin-Mediated Spike Cleavage. mBio 2021 08;12(4):e0058721
    Cheng YW et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 80
  • 文献情報:
    Araujo-Silva CA et al. Presumed SARS-CoV-2 Viral Particles in the Human Retina of Patients With COVID-19. JAMA Ophthalmol 2021 09;139(9):1015-1021
    Araujo-Silva CA et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 81
  • 文献情報:
    Dal Ferro M et al. SARS-CoV-2, myocardial injury and inflammation: insights from a large clinical and autopsy study. Clin Res Cardiol 2021 Jul;
    Dal Ferro M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 82
  • 文献情報:
    Lam LKM et al. Erythrocytes identify complement activation in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol 2021 08;321(2):L485-L489
    Lam LKM et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 83
  • 文献情報:
    Nchioua R et al. SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. mBio 2020 10;11(5)
    Nchioua R et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 84
  • 文献情報:
    Cheng YW et al. Furin Inhibitors Block SARS-CoV-2 Spike Protein Cleavage to Suppress Virus Production and Cytopathic Effects. Cell Rep 2020 10;33(2):108254
    Cheng YW et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 85
  • 文献情報:
    Conzelmann C et al. Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection. J Extracell Vesicles 2020 Aug;9(1):1808281
    Conzelmann C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 86
  • 文献情報:
    Song E et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. bioRxiv 2020 Sep;
    Song E et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 87
  • 文献情報:
    Ramani A et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2020 10;39(20):e106230
    Ramani A et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 88
  • 文献情報:
    Sasaki M et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021 01;17(1):e1009233
    Sasaki M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 89
  • 文献情報:
    Tada T et al. Convalescent-Phase Sera and Vaccine-Elicited Antibodies Largely Maintain Neutralizing Titer against Global SARS-CoV-2 Variant Spikes. mBio 2021 06;12(3):e0069621
    Tada T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 90
  • 文献情報:
    Matsuura R et al. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO<sub>2</sub> Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021 05;13(5)
    Matsuura R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 91
  • 文献情報:
    Wu CT et al. SARS-CoV-2 infects human pancreatic &#x3B2; cells and elicits &#x3B2; cell impairment. Cell Metab 2021 08;33(8):1565-1576.e5
    Wu CT et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 92
  • 文献情報:
    Colson A et al. Clinical and in&#xA0;Vitro Evidence against Placenta Infection at Term by Severe Acute Respiratory Syndrome Coronavirus 2. Am J Pathol 2021 09;191(9):1610-1623
    Colson A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 93
  • 文献情報:
    Masterson AN et al. Multiplexed and High-Throughput Label-Free Detection of RNA/Spike Protein/IgG/IgM Biomarkers of SARS-CoV-2 Infection Utilizing Nanoplasmonic Biosensors. Anal Chem 2021 06;93(25):8754-8763
    Masterson AN et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 94
  • 文献情報:
    Yang AC et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021 07;595(7868):565-571
    Yang AC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 95
  • 文献情報:
    Higuchi Y et al. Engineered ACE2 receptor therapy overcomes mutational escape of SARS-CoV-2. Nat Commun 2021 06;12(1):3802
    Higuchi Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 96
  • 文献情報:
    Fenizia C et al. SARS-CoV-2 Entry: At the Crossroads of CD147 and ACE2. Cells 2021 06;10(6)
    Fenizia C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 97
  • 文献情報:
    Conzelmann C et al. An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Res 2020 09;181:104882
    Conzelmann C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 98
  • 文献情報:
    Ciccosanti F et al. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021 06;190:105064
    Ciccosanti F et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 99
  • 文献情報:
    Braga L et al. Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 2021 06;594(7861):88-93
    Braga L et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 100
  • 文献情報:
    Sui Y et al. Protection against SARS-CoV-2 infection by a mucosal vaccine in rhesus macaques. JCI Insight 2021 04;6(10)
    Sui Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 101
  • 文献情報:
    Kim YJ et al. The Impact on Infectivity and Neutralization Efficiency of SARS-CoV-2 Lineage B.1.351 Pseudovirus. Viruses 2021 04;13(4)
    Kim YJ et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 102
  • 文献情報:
    Di Domenico M et al. Detection of SARS-COV-2 Proteins Using an ELISA Test. Diagnostics (Basel) 2021 Apr;11(4)
    Di Domenico M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 103
  • 文献情報:
    Harbour JC et al. Cellular and Humoral Immune Responses in Mice Immunized with Vaccinia Virus Expressing the SARS-CoV-2 Spike Protein. J Immunol 2021 06;206(11):2596-2604
    Harbour JC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 104
  • 文献情報:
    Gutmann C et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat Commun 2021 06;12(1):3406
    Gutmann C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 105
  • 文献情報:
    Kumar A et al. SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors. J Virol 2021 06;95(13):e0026621
    Kumar A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 106
  • 文献情報:
    Seo JS et al. The Microvillar and Solitary Chemosensory Cells as the Novel Targets of Infection of SARS-CoV-2 in Syrian Golden Hamsters. Viruses 2021 08;13(8)
    Seo JS et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 107
  • 文献情報:
    Gomes I et al. SARS-CoV-2 infection of the central nervous system in a 14-month-old child: A case report of a complete autopsy. Lancet Reg Health Am 2021 Oct;2:100046
    Gomes I et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 108
  • 文献情報:
    Uemura K et al. 5-Hydroxymethyltubercidin exhibits potent antiviral activity against flaviviruses and coronaviruses, including SARS-CoV-2. iScience 2021 Oct;24(10):103120
    Uemura K et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 109
  • 文献情報:
    Navaratnarajah CK et al. Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. J Virol 2021 11;95(24):e0136821
    Navaratnarajah CK et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 110
  • 文献情報:
    Matsuoka K et al. SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer. J Biol Chem 2022 Feb;:101724
    Matsuoka K et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 111
  • 文献情報:
    Suzuki R et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature 2022 Feb;
    Suzuki R et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 112
  • 文献情報:
    Kung YA et al. Acyl-Coenzyme A Synthetase Long-Chain Family Member 4 Is Involved in Viral Replication Organelle Formation and Facilitates Virus Replication via Ferroptosis. mBio 2022 Jan;:e0271721
    Kung YA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 113
  • 文献情報:
    Kim Y et al. MCMV-based vaccine vectors expressing full-length viral proteins provide long-term humoral immune protection upon a single-shot vaccination. Cell Mol Immunol 2022 02;19(2):234-244
    Kim Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 114
  • 文献情報:
    Wan L et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat Metab 2022 01;4(1):29-43
    Wan L et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 115
  • 文献情報:
    Fenizia C et al. Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiol Spectr 2022 02;10(1):e0150421
    Fenizia C et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 116
  • 文献情報:
    Tada T et al. High-titer neutralization of Mu and C.1.2 SARS-CoV-2 variants by vaccine-elicited antibodies of previously infected individuals. Cell Rep 2022 01;38(2):110237
    Tada T et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 117
  • 文献情報:
    Singh RD et al. The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications. Biochim Biophys Acta Mol Basis Dis 2022 03;1868(3):166322
    Singh RD et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 118
  • 文献情報:
    Yokoi S et al. COVID-19-associated livedo and purpura: clinical and histopathological findings. Eur J Dermatol 2021 Aug;
    Yokoi S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 119
  • 文献情報:
    Kongsuphol P., et al., A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies., Communications Medicine., 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 120
  • 文献情報:
    Zhang Z et al. SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ 2021 09;28(9):2765-2777
    Zhang Z et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 121
  • 文献情報:
    Rosner-Tenerowicz A et al. Placental pathology in a pregnant woman with severe COVID-19 and successful ECMO treatment: a case report. BMC Pregnancy Childbirth 2021 Nov;21(1):760
    Rosner-Tenerowicz A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 122
  • 文献情報:
    Al-Beltagi S et al. Emergent SARS-CoV-2 variants: comparative replication dynamics and high sensitivity to thapsigargin. Virulence 2021 12;12(1):2946-2956
    Al-Beltagi S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 123
  • 文献情報:
    Ohtsuka J et al. Non-propagative human parainfluenza virus type 2 nasal vaccine robustly protects the upper and lower airways against SARS-CoV-2. iScience 2021 Dec;24(12):103379
    Ohtsuka J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 124
  • 文献情報:
    Saito A et al. Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature 2022 02;602(7896):300-306
    Saito A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 125
  • 文献情報:
    Kim M et al. In Vitro Replication Inhibitory Activity of Xanthorrhizol against Severe Acute Respiratory Syndrome Coronavirus 2. Biomedicines 2021 Nov;9(11)
    Kim M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 126
  • 文献情報:
    Zhong C et al. Mucosal vaccination induces protection against SARS-CoV-2 in the absence of detectable neutralizing antibodies. NPJ Vaccines 2021 Nov;6(1):139
    Zhong C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 127
  • 文献情報:
    Xiao Y et al. A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell 2021 12;184(25):6037-6051.e14
    Xiao Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 128
  • 文献情報:
    Zhao L., et al., SARS-CoV-2 spike protein harnesses SNX27-mediated endocytic recycling pathway., MedComm., 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 129
  • 文献情報:
    Shue B et al. Genome-Wide CRISPR Screen Identifies RACK1 as a Critical Host Factor for Flavivirus Replication. J Virol 2021 11;95(24):e0059621
    Shue B et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 130
  • 文献情報:
    Johnson JE et al. Coronavirus Disease 2019 (COVID-19) Coronary Vascular Thrombosis: Correlation with Neutrophil but Not Endothelial Activation. Am J Pathol 2022 01;192(1):112-120
    Johnson JE et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 131
  • 文献情報:
    Carter-Timofte ME et al. Antiviral Potential of the Antimicrobial Drug Atovaquone against SARS-CoV-2 and Emerging Variants of Concern. ACS Infect Dis 2021 11;7(11):3034-3051
    Carter-Timofte ME et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 132
  • 文献情報:
    Kudose S et al. Longitudinal Outcomes of COVID-19-Associated Collapsing Glomerulopathy and Other Podocytopathies. J Am Soc Nephrol 2021 Nov;32(11):2958-2969
    Kudose S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 133
  • 文献情報:
    Ren H et al. Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection. Biol Direct 2021 10;16(1):20
    Ren H et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 134
  • 文献情報:
    Tada T et al. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 2021 Nov;24(11):103341
    Tada T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 135
  • 文献情報:
    Kim DH et al. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci Rep 2021 11;11(1):21462
    Kim DH et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 136
  • 文献情報:
    Thyrsted J et al. Influenza A induces lactate formation to inhibit type I IFN in primary human airway epithelium. iScience 2021 Nov;24(11):103300
    Thyrsted J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 137
  • 文献情報:
    Neuberger M et al. Duodenal tropism of SARS-CoV-2 and clinical findings in critically ill COVID-19 patients. Infection 2022 Oct;50(5):1111-1120
    Neuberger M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 138
  • 文献情報:
    Gehlhausen JR et al. Lack of association between pandemic chilblains and SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2022 Mar;119(9)
    Gehlhausen JR et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 139
  • 文献情報:
    Magalh達es AC et al. InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens 2022 Mar;11(3)
    Magalh達es AC et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 140
  • 文献情報:
    Ramadan AA et al. Identification of SARS-CoV-2 Spike Palmitoylation Inhibitors That Results in Release of Attenuated Virus with Reduced Infectivity. Viruses 2022 Mar;14(3)
    Ramadan AA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 141
  • 文献情報:
    Dorman LC et al. A type I interferon response defines a conserved microglial state required for effective neuronal phagocytosis. bioRxiv 2022 Feb;
    Dorman LC et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 142
  • 文献情報:
    Song J et al. LRRC15 is an inhibitory receptor blocking SARS-CoV-2 spike-mediated entry <i>in trans</i>. bioRxiv 2021 Nov;
    Song J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 143
  • 文献情報:
    Zhao L et al. SARS-CoV-2 spike protein harnesses SNX27-mediated endocytic recycling pathway. MedComm (2020) 2021 Dec;2(4):798-809
    Zhao L et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 144
  • 文献情報:
    Biering SB et al. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-&#x3B2; signaling. bioRxiv 2021 Dec;
    Biering SB et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 145
  • 文献情報:
    De Angelis M et al. Protective Role of Combined Polyphenols and Micronutrients against Influenza A Virus and SARS-CoV-2 Infection In Vitro. Biomedicines 2021 Nov;9(11)
    De Angelis M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 146
  • 文献情報:
    Storti B et al. A spatial multi-scale fluorescence microscopy toolbox discloses entry checkpoints of SARS-CoV-2 variants in Vero E6 cells. Comput Struct Biotechnol J 2021;19:6140-6156
    Storti B et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 147
  • 文献情報:
    Chen HY et al. Cytoplasmic Tail Truncation of SARS-CoV-2 Spike Protein Enhances Titer of Pseudotyped Vectors but Masks the Effect of the D614G Mutation. J Virol 2021 Oct;95(22):e0096621
    Chen HY et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 148
  • 文献情報:
    Oguntuyo KY et al. Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. mBio 2021 Feb;12(1)
    Oguntuyo KY et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 149
  • 文献情報:
    De Santis R et al. Rapid inactivation of SARS-CoV-2 with LED irradiation of visible spectrum wavelengths. J Photochem Photobiol 2021 Dec;8:100082
    De Santis R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 150
  • 文献情報:
    Liu S et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat Commun 2021 Oct;12(1):5739
    Liu S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 151
  • 文献情報:
    Nakayama T et al. Determinants of SARS-CoV-2 entry and replication in airway mucosal tissue and susceptibility in smokers. Cell Rep Med 2021 Oct;2(10):100421
    Nakayama T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 152
  • 文献情報:
    Mirabelli C et al. Morphological cell profiling of SARS-CoV-2 infection identifies drug repurposing candidates for COVID-19. Proc Natl Acad Sci U S A 2021 Sep;118(36)
    Mirabelli C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 153
  • 文献情報:
    Li X et al. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles. PLoS Pathog 2021 Sep;17(9):e1009898
    Li X et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 154
  • 文献情報:
    Kulkarni R et al. Vaccinia virus-based vaccines confer protective immunity against SARS-CoV-2 virus in Syrian hamsters. PLoS One 2021;16(9):e0257191
    Kulkarni R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 155
  • 文献情報:
    Sasaki M et al. SARS-CoV-2 Bearing a Mutation at the S1/S2 Cleavage Site Exhibits Attenuated Virulence and Confers Protective Immunity. mBio 2021 08;12(4):e0141521
    Sasaki M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 156
  • 文献情報:
    Boyraz B et al. Placental pathology from COVID-19-recovered (nonacute) patients. Hum Pathol 2022 Jul;125:18-22
    Boyraz B et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 157
  • 文献情報:
    Riccio A et al. Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cell Mol Life Sci 2022 Apr;79(5):227
    Riccio A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 158
  • 文献情報:
    Wanner N et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat Metab 2022 Mar;4(3):310-319
    Wanner N et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 159
  • 文献情報:
    Ariumi Y. Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection. J Virol 2022 Mar;96(6):e0000222
    Ariumi Y
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 160
  • 文献情報:
    Trevelin SC et al. Disrupted Peyer&#39;s Patch Microanatomy in COVID-19 Including Germinal Centre Atrophy Independent of Local Virus. Front Immunol 2022;13:838328
    Trevelin SC et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 161
  • 文献情報:
    Cao J et al. Screening of Botanical Drugs against SARS-CoV-2 Entry Reveals Novel Therapeutic Agents to Treat COVID-19. Viruses 2022 Feb;14(2)
    Cao J et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 162
  • 文献情報:
    Guo W et al. Topical TMPRSS2 inhibition prevents SARS-CoV-2 infection in differentiated human airway cultures. Life Sci Alliance 2022 Apr;5(4)
    Guo W et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 163
  • 文献情報:
    Garcia-Flores V et al. Maternal-fetal immune responses in pregnant women infected with SARS-CoV-2. Nat Commun 2022 Jan;13(1):320
    Garcia-Flores V et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 164
  • 文献情報:
    Bordoni V et al. The interplay between SARS-CoV-2 infected airway epithelium and immune cells modulates regulatory/inflammatory signals. iScience 2022 Feb;25(2):103854
    Bordoni V et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 165
  • 文献情報:
    Chang YC et al. A siRNA targets and inhibits a broad range of SARS-CoV-2 infections including Delta variant. EMBO Mol Med 2022 Apr;14(4):e15298
    Chang YC et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 166
  • 文献情報:
    Ahamad S et al. Anti-Fungal Drug Anidulafungin Inhibits SARS-CoV-2 Spike-Induced Syncytia Formation by Targeting ACE2-Spike Protein Interaction. Front Genet 2022;13:866474
    Ahamad S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 167
  • 文献情報:
    Meng B et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts tropism and fusogenicity. Nature 2022 Feb;
    Meng B et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 168
  • 文献情報:
    Santos A et al. Absence of SARS-CoV-2 Spike glycoprotein expression in placentas from individuals after mRNA SARS-CoV-2 vaccination. Mod Pathol 2022 Sep;35(9):1175-1180
    Santos A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 169
  • 文献情報:
    D鱈az-Salinas MA et al. Conformational dynamics and allosteric modulation of the SARS-CoV-2 spike. Elife 2022 Mar;11
    D鱈az-Salinas MA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 170
  • 文献情報:
    R旦ltgen K et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell 2022 Mar;185(6):1025-1040.e14
    R旦ltgen K et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 171
  • 文献情報:
    Welsh E et al. Negative SARS-CoV-2 antibodies in patients with positive immunohistochemistry for spike protein in pityriasis rosea-like eruptions. J Eur Acad Dermatol Venereol 2022 Sep;36(9):e661-e662
    Welsh E et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 172
  • 文献情報:
    Nirenberg MS et al. Histopathology of persistent long COVID toe: A case report. J Cutan Pathol 2022 Sep;49(9):791-794
    Nirenberg MS et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 173
  • 文献情報:
    Mac Kain A et al. Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nat Commun 2022 May;13(1):2442
    Mac Kain A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 174
  • 文献情報:
    Panina I et al. Molecular Dynamics of DHHC20 Acyltransferase Suggests Principles of Lipid and Protein Substrate Selectivity. Int J Mol Sci 2022 May;23(9)
    Panina I et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 175
  • 文献情報:
    Yamasoba D et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 2022 Jun;185(12):2103-2115.e19
    Yamasoba D et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 176
  • 文献情報:
    Hayashi H et al. Preclinical study of a DNA vaccine targeting SARS-CoV-2. Curr Res Transl Med 2022 Sep;70(4):103348
    Hayashi H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 177
  • 文献情報:
    Nyein CM et al. Severe de novo liver injury after Moderna vaccination - not always autoimmune hepatitis. J Hepatol 2022 Aug;77(2):556-558
    Nyein CM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 178
  • 文献情報:
    Ji N et al. SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients. Emerg Microbes Infect 2022 Dec;11(1):1115-1125
    Ji N et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 179
  • 文献情報:
    Pinto AL et al. Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium. Nat Commun 2022 Mar;13(1):1609
    Pinto AL et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 180
  • 文献情報:
    Yang H et al. Cytoplasmic domain and enzymatic activity of ACE2 are not required for PI4KB dependent endocytosis entry of SARS-CoV-2 into host cells. Virol Sin 2022 Jun;37(3):380-389
    Yang H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 181
  • 文献情報:
    Gerber PP et al. A protease-activatable luminescent biosensor and reporter cell line for authentic SARS-CoV-2 infection. PLoS Pathog 2022 Feb;18(2):e1010265
    Gerber PP et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 182
  • 文献情報:
    Gupta R. SARS-CoV-2 Omicron spike mediated immune escape and tropism shift. Res Sq 2022 Jan;
    Gupta R
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 183
  • 文献情報:
    Peng KW et al. Boosting of SARS-CoV-2 immunity in nonhuman primates using an oral rhabdoviral vaccine. Vaccine 2022 Apr;40(15):2342-2351
    Peng KW et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 184
  • 文献情報:
    Grossegesse M et al. Deep Time Course Proteomics of SARS-CoV- and SARS-CoV-2-Infected Human Lung Epithelial Cells (Calu-3) Reveals Strong Induction of Interferon-Stimulated Gene Expression by SARS-CoV-2 in Contrast to SARS-CoV. J Proteome Res 2022 Feb;21(
    Grossegesse M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 185
  • 文献情報:
    Wei SC et al. An Integrated Platform for Serological Detection and Vaccination of COVID-19. Front Immunol 2021;12:771011
    Wei SC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 186
  • 文献情報:
    Khan S et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-&#x3BA;B pathway. Elife 2021 Dec;10
    Khan S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 187
  • 文献情報:
    Zech F et al. Spike residue 403 affects binding of coronavirus spikes to human ACE2. Nat Commun 2021 Nov;12(1):6855
    Zech F et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 188
  • 文献情報:
    He X et al. A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge. Emerg Microbes Infect 2021 Dec;10(1):1555-1573
    He X et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 189
  • 文献情報:
    Biji A et al. Identification of COVID-19 prognostic markers and therapeutic targets through meta-analysis and validation of Omics data from nasopharyngeal samples. EBioMedicine 2021 Aug;70:103525
    Biji A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 190
  • 文献情報:
    Chen EC et al. Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Rep 2021 Aug;36(8):109604
    Chen EC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 191
  • 文献情報:
    Roberts DJ et al. A standardized definition of placental infection by SARS-CoV-2, a consensus statement from the National&#xA0;Institutes of Health/Eunice Kennedy Shriver National&#xA0;Institute of Child Health and Human Development&#xA0;SARS-CoV-2 Placen
    Roberts DJ et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 192
  • 文献情報:
    Prelli Bozzo C et al. IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nat Commun 2021 Jul;12(1):4584
    Prelli Bozzo C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 193
  • 文献情報:
    Wong DWL et al. Multisystemic Cellular Tropism of SARS-CoV-2 in Autopsies of COVID-19 Patients. Cells 2021 Jul;10(8)
    Wong DWL et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 194
  • 文献情報:
    Trimpert J et al. Development of safe and highly protective live-attenuated SARS-CoV-2 vaccine candidates by genome recoding. Cell Rep 2021 Aug;36(5):109493
    Trimpert J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 195
  • 文献情報:
    Pedrosa CDSG et al. Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res 2021 Jul;54:102436
    Pedrosa CDSG et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 196
  • 文献情報:
    Lyonnais S et al. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep 2021 Jun;11(1):11885
    Lyonnais S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 197
  • 文献情報:
    Vandergaast R et al. IMMUNO-COV v2.0: Development and Validation of a High-Throughput Clinical Assay for Measuring SARS-CoV-2-Neutralizing Antibody Titers. mSphere 2021 Jun;6(3):e0017021
    Vandergaast R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 198
  • 文献情報:
    Tsukada A et al. A Kidney Transplant Patient Who Died of COVID-19-associated Severe Acute Respiratory Distress Syndrome. Intern Med 2021 Jul;60(14):2297-2300
    Tsukada A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 199
  • 文献情報:
    Ebisudani T et al. Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Rep 2021 Jun;35(10):109218
    Ebisudani T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 200
  • 文献情報:
    Teng Y et al. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021 Aug;29(8):2424-2440
    Teng Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 201
  • 文献情報:
    Hayn M et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep 2021 05;35(7):109126
    Hayn M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 202
  • 文献情報:
    Deinhardt-Emmer S et al. SARS-CoV-2 causes severe epithelial inflammation and barrier dysfunction. J Virol 2021 Feb;95(10)
    Deinhardt-Emmer S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 203
  • 文献情報:
    Walker JM et al. COVID-19 Patients With CNS Complications and Neuropathologic Features of Acute Disseminated Encephalomyelitis and Acute Hemorrhagic Leukoencephalopathy. J Neuropathol Exp Neurol 2021 Jun;80(6):628-631
    Walker JM et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 204
  • 文献情報:
    Casagrande M et al. Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. Br J Ophthalmol 2022 Sep;106(9):1313-1317
    Casagrande M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 205
  • 文献情報:
    de Alwis R et al. A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice. Mol Ther 2021 Jun;29(6):1970-1983
    de Alwis R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 206
  • 文献情報:
    Khan S et al. SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-&#x3BA;B pathway. bioRxiv 2021 Mar;
    Khan S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 207
  • 文献情報:
    Uemura K et al. MRC5 cells engineered to express ACE2 serve as a model system for the discovery of antivirals targeting SARS-CoV-2. Sci Rep 2021 03;11(1):5376
    Uemura K et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 208
  • 文献情報:
    Dawson ED et al. Multiplexed, microscale, microarray-based serological assay for antibodies against all human-relevant coronaviruses. J Virol Methods 2021 May;291:114111
    Dawson ED et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 209
  • 文献情報:
    Azad T et al. Nanoluciferase complementation-based bioreporter reveals the importance of N-linked glycosylation of SARS-CoV-2&#xA0;S for viral entry. Mol Ther 2021 Jun;29(6):1984-2000
    Azad T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 210
  • 文献情報:
    Routhu NK et al. A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs. Immunity 2021 Mar;54(3):542-556.e9
    Routhu NK et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 211
  • 文献情報:
    Osipiuk J et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat Commun 2021 Feb;12(1):743
    Osipiuk J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 212
  • 文献情報:
    Casagrande M et al. Presence of SARS-CoV-2 RNA in the Cornea of Viremic Patients With COVID-19. JAMA Ophthalmol 2021 Apr;139(4):383-388
    Casagrande M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 213
  • 文献情報:
    Bayati A et al. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 2021;296:100306
    Bayati A et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 214
  • 文献情報:
    Chen Y et al. Quantitative and Ultrasensitive In-situ Immunoassay Technology for SARS-CoV-2 Detection in Saliva. Res Sq 2021 Jan;
    Chen Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 215
  • 文献情報:
    Yin X et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep 2021 Jan;34(2):108628
    Yin X et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 216
  • 文献情報:
    Priori A et al. The Many Faces of Covid-19 at a Glance: A University Hospital Multidisciplinary Account From Milan, Italy. Front Public Health 2020;8:575029
    Priori A et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 217
  • 文献情報:
    Stewart H et al. Tetherin antagonism by SARS-CoV-2 enhances virus release: multiple mechanisms including ORF3a-mediated defective retrograde traffic. bioRxiv 2022 Dec;
    Stewart H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 218
  • 文献情報:
    Wang C et al. ApoE-Isoform-Dependent SARS-CoV-2 Neurotropism and Cellular Response. Cell Stem Cell 2021 Feb;28(2):331-342.e5
    Wang C et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 219
  • 文献情報:
    Mirabelli C et al. Morphological Cell Profiling of SARS-CoV-2 Infection Identifies Drug Repurposing Candidates for COVID-19. bioRxiv 2020 Dec;
    Mirabelli C et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 220
  • 文献情報:
    Tada T et al. An ACE2 Microbody Containing a Single Immunoglobulin Fc Domain Is a Potent Inhibitor of SARS-CoV-2. Cell Rep 2020 12;33(12):108528
    Tada T et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 221
  • 文献情報:
    Cortese M et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 2020 Dec;28(6):853-866.e5
    Cortese M et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 222
  • 文献情報:
    Kr端ger J et al. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2021;11(4):935-948
    Kr端ger J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 223
  • 文献情報:
    Jocher G et al. ADAM10 and ADAM17 promote SARS-CoV-2 cell entry and spike protein-mediated lung cell fusion. EMBO Rep 2022 Jun;23(6):e54305
    Jocher G et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 224
  • 文献情報:
    Cao L et al. The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy against parental SARS-CoV-2 and variants. Sci Transl Med 2022 Sep;14(661):eabm7621
    Cao L et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 225
  • 文献情報:
    Fielding CA et al. SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies. Elife 2022 May;11
    Fielding CA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 226
  • 文献情報:
    Zeng W et al. Evidence of Infection of Human Embryonic Stem Cells by SARS-CoV-2. Front Cell Infect Microbiol 2022;12:911313
    Zeng W et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 227
  • 文献情報:
    Zhang S et al. SARS-CoV-2 virus NSP14 Impairs NRF2/HMOX1 activation by targeting Sirtuin 1. Cell Mol Immunol 2022 Aug;19(8):872-882
    Zhang S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 228
  • 文献情報:
    Fujimoto D et al. Sputum characteristics of patients with severe COVID-19: report of two cases with immunocytochemical detection of SARS-CoV-2 spike protein. Med Mol Morphol 2022 Dec;55(4):316-322
    Fujimoto D et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 229
  • 文献情報:
    Rappaport AR et al. Low-dose self-amplifying mRNA COVID-19 vaccine drives strong protective immunity in non-human primates against SARS-CoV-2 infection. Nat Commun 2022 Jun;13(1):3289
    Rappaport AR et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 230
  • 文献情報:
    Chen Y et al. Quantitative and ultrasensitive in situ immunoassay technology for SARS-CoV-2 detection in saliva. Sci Adv 2022 May;8(21):eabn3481
    Chen Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 231
  • 文献情報:
    Kongsuphol P et al. A rapid simple point-of-care assay for the detection of SARS-CoV-2 neutralizing antibodies. Commun Med (Lond) 2021;1:46
    Kongsuphol P et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 232
  • 文献情報:
    Plan竪s R et al. Human NLRP1 is a sensor of pathogenic coronavirus 3CL proteases in lung epithelial cells. Mol Cell 2022 Jul;82(13):2385-2400.e9
    Plan竪s R et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 233
  • 文献情報:
    Jennings BC et al. A weak COPI binding motif in the cytoplasmic tail of SARS-CoV-2 spike glycoprotein is necessary for its cleavage, glycosylation, and localization. FEBS Lett 2021 Jul;595(13):1758-1767
    Jennings BC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 234
  • 文献情報:
    Tang WF et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 2021 Jun;44(3):293-303
    Tang WF et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 235
  • 文献情報:
    Limanaqi F et al. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells. Biol Res 2024 Jan;57(1):2
    Limanaqi F et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 236
  • 文献情報:
    Zorad S et al. Angiotensin I and II Stimulate Cell Invasion of SARS-CoV-2: Potential Mechanism via Inhibition of ACE2 Arm of RAS. Physiol Res 2024 Mar;73(1):27-35
    Zorad S et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 237
  • 文献情報:
    Lee S et al. Assessing the impact of mRNA vaccination in chronic inflammatory murine model. NPJ Vaccines 2024 Feb;9(1):34
    Lee S et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 238
  • 文献情報:
    Tang W-F et al. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024 Apr;68(4):e0095623
    Tang W-F et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 239
  • 文献情報:
    Bolland W et al. High fusion and cytopathy of SARS-CoV-2 variant B.1.640.1. J Virol 2024 Jan;98(1):e0135123
    Bolland W et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 240
  • 文献情報:
    T Iida et al., High-throughput Light-induced Immunoassay under One-minute Antibody-coating with Energy Saving Nanoparticle-imprinted Substrate, Research Square., 2024., ().,

  • 備考:
  • 参照:
    PubMed
  • No.: 241
  • 文献情報:
    Lin CH et al. Inhibitory Efficacy of Main Components of <i>Scutellaria baicalensis</i> on the Interaction between Spike Protein of SARS-CoV-2 and Human Angiotensin-Converting Enzyme II. Int J Mol Sci 2024 Mar;25(5)
    Lin CH et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 242
  • 文献情報:
    Inoue T et al. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024 Apr;27(4):109363
    Inoue T et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 243
  • 文献情報:
    Zhang F et al. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. mBio 2024 Feb;15(2):e0167223
    Zhang F et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 244
  • 文献情報:
    S Clever et al., Single MVA-SARS-2-ST/N Vaccination Rapidly Protects K18-hACE2 Mice against a Lethal SARS-CoV-2 Challenge Infection, Viruses., 2024., 16(3)., 417

  • 備考:
  • 参照:
    PubMed
  • No.: 245
  • 文献情報:
    Muñoz-Alía MÁ et al. Surface-modified measles vaccines encoding oligomeric, prefusion-stabilized SARS-CoV-2 spike glycoproteins boost neutralizing antibody responses to Omicron and historical variants, independent of measles seropositivity. mBio 2024 Feb;
    Muñoz-Alía MÁ et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 246
  • 文献情報:
    Tsumita T et al. Viral uptake and pathophysiology of the lung endothelial cells in age-associated severe SARS-CoV-2 infection models. Aging Cell 2024 Feb;23(2):e14050
    Tsumita T et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 247
  • 文献情報:
    Zuo Y et al. Vitamin C promotes ACE2 degradation and protects against SARS-CoV-2 infection. EMBO Rep 2023 Apr;24(4):e56374
    Zuo Y et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 248
  • 文献情報:
    Normandin E et al. Neuropathological features of SARS-CoV-2 delta and omicron variants. J Neuropathol Exp Neurol 2023 Mar;82(4):283-295
    Normandin E et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 249
  • 文献情報:
    Bhargava A et al. Transcriptomic analysis of sorted lung cells revealed a proviral activity of the NF-&#x3BA;B pathway toward SARS-CoV-2. iScience 2023 Dec;26(12):108449
    Bhargava A et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 250
  • 文献情報:
    Fujita S et al. Determination of the factors responsible for the tropism of SARS-CoV-2-related bat coronaviruses to <i>Rhinolophus</i> bat ACE2. J Virol 2023 Oct;97(10):e0099023
    Fujita S et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 251
  • 文献情報:
    Kimura I et al. Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics. J Virol 2023 Oct;97(10):e0101123
    Kimura I et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 252
  • 文献情報:
    Kachko A et al. Vaccine-associated respiratory pathology correlates with viral clearance and protective immunity after immunization with self-amplifying RNA expressing the spike (S) protein of SARS-CoV-2 in mouse models. Vaccine 2024 Jan;42(3):608-619
    Kachko A et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 253
  • 文献情報:
    M Nogami et al., Anti-Spike Protein Antibody Immunoreactivity Is Widely Expressed in Human Lymph Nodes with or without Pfizer-BioNTech or Moderna mRNA Vaccination in Non-Infected Individuals., Research Square., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 254
  • 文献情報:
    Carvalhal F et al. Evaluation of the Cytotoxic and Antiviral Effects of Small Molecules Selected by In Silico Studies as Inhibitors of SARS-CoV-2 Cell Entry. Molecules 2023 Oct;28(20)
    Carvalhal F et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 255
  • 文献情報:
    L辿cuyer D et al. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front Immunol 2023;14:1270081
    L辿cuyer D et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 256
  • 文献情報:
    Zhang P et al. Increased neutralization potency and breadth elicited by a SARS-CoV-2 mRNA vaccine forming virus-like particles. Proc Natl Acad Sci U S A 2023 Jul;120(29):e2305896120
    Zhang P et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 257
  • 文献情報:
    Streblow DN et al. Aerosol delivery of SARS-CoV-2 human monoclonal antibodies in macaques limits viral replication and lung pathology. Nat Commun 2023 Nov;14(1):7062
    Streblow DN et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 258
  • 文献情報:
    Cui Q et al. The Apolipoprotein E neutralizing antibody inhibits SARS-CoV-2 infection by blocking cellular entry of lipoviral particles. MedComm (2020) 2023 Oct;4(5):e400
    Cui Q et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 259
  • 文献情報:
    Yang CF et al. Human ACE2 protein is a molecular switch controlling the mode of SARS-CoV-2 transmission. J Biomed Sci 2023 Oct;30(1):87
    Yang CF et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 260
  • 文献情報:
    Cottignies-Calamarte A et al. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques. STAR Protoc 2023 Dec;4(4):102593
    Cottignies-Calamarte A et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 261
  • 文献情報:
    Ahmed N et al. microRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host&#39;s Lipid Microenvironment. Viruses 2023 Sep;15(9)
    Ahmed N et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 262
  • 文献情報:
    Sauve F et al. Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death. EBioMedicine 2023 Oct;96:104784
    Sauve F et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 263
  • 文献情報:
    Di Primio C et al. Severe acute respiratory syndrome coronavirus 2 infection leads to Tau pathological signature in neurons. PNAS Nexus 2023 Sep;2(9):pgad282
    Di Primio C et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 264
  • 文献情報:
    Ullah TR et al. Pharmacological inhibition of TBK1/IKK&#x3B5; blunts immunopathology in a murine model of SARS-CoV-2 infection. Nat Commun 2023 Sep;14(1):5666
    Ullah TR et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 265
  • 文献情報:
    N Ahmed et al., microRNA-185 Inhibits SARS-CoV-2 Infection through the Modulation of the Host’s Lipid Microenvironment., Viruses., 2023., 15., 9., 1921

  • 備考:
  • 参照:
    PubMed
  • No.: 266
  • 文献情報:
    Giannakopoulos S et al. In vitro evidence against productive SARS-CoV-2 infection of human testicular cells: Bystander effects of infection mediate testicular injury. bioRxiv 2022 Sep;
    Giannakopoulos S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 267
  • 文献情報:
    Vaddadi K et al. Cellular microRNAs target SARS-CoV-2 spike protein and restrict viral replication. Am J Physiol Cell Physiol 2023 Aug;325(2):C420-C428
    Vaddadi K et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 268
  • 文献情報:
    Swain J et al. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells. iScience 2023 Aug;26(8):107384
    Swain J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 269
  • 文献情報:
    Narayan R et al. Picolinic acid is a broad-spectrum inhibitor of enveloped virus entry that restricts SARS-CoV-2 and influenza A virus in&#xA0;vivo. Cell Rep Med 2023 Aug;4(8):101127
    Narayan R et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 270
  • 文献情報:
    T Deckert-Gaudig et al., Identification of RNA-containing virus particles using a triple correlative morphological and microscopic approach., ChemRxiv., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 271
  • 文献情報:
    Hornung F et al. Thoracic adipose tissue contributes to severe virus infection of the lung. Int J Obes (Lond) 2023 Nov;47(11):1088-1099
    Hornung F et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 272
  • 文献情報:
    Sandra E. Reznik et al., SARS-CoV-2 Infection in Unvaccinated High-Risk Pregnant Women in the Bronx, NY, USA Is Associated with Decreased Apgar Scores and Placental Villous Infarcts., Biomolecules., 2023., 13., 8., 1224

  • 備考:
  • 参照:
    PubMed
  • No.: 273
  • 文献情報:
    Azarias Da Silva M et al. Repetitive mRNA vaccination is required to improve the quality of broad-spectrum anti-SARS-CoV-2 antibodies in the absence of CXCL13. Sci Adv 2023 Aug;9(31):eadg2122
    Azarias Da Silva M et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 274
  • 文献情報:
    Zhang F et al. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. bioRxiv 2023 Jun;
    Zhang F et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 275
  • 文献情報:
    Sayedahmed EE et al. Impact of an autophagy-inducing peptide on immunogenicity and protection efficacy of an adenovirus-vectored SARS-CoV-2 vaccine. Mol Ther Methods Clin Dev 2023 Sep;30:194-207
    Sayedahmed EE et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 276
  • 文献情報:
    Rinschen MM et al. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney. Sci Signal 2022 Nov;15(762):eabo7940
    Rinschen MM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 277
  • 文献情報:
    Yang J et al. Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nat Microbiol 2023 Jan;8(1):121-134
    Yang J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 278
  • 文献情報:
    Xu D et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023 Jul;619(7971):819-827
    Xu D et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 279
  • 文献情報:
    Tanikawa T et al. Degradative Effect of Nattokinase on Spike Protein of SARS-CoV-2. Molecules 2022 Aug;27(17)
    Tanikawa T et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 280
  • 文献情報:
    Pillai S et al. A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells. Res Sq 2023 May;
    Pillai S et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 281
  • 文献情報:
    Kuzmina A et al. Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity. Heliyon 2023 Jun;9(6):e16750
    Kuzmina A et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 282
  • 文献情報:
    Diray-Arce J et al. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023 Jun;4(6):101079
    Diray-Arce J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 283
  • 文献情報:
    Zhang YM et al. Clinicopathological and immunological features of new onset kidney disease: a rare event after SARS-CoV-2 vaccination. Natl Sci Rev 2023 May;10(5):nwac034
    Zhang YM et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 284
  • 文献情報:
    et al., Changes within the P681 residue of spike dictate cell fusion and syncytia formation of Delta and Omicron variants of SARS-CoV-2 with no effects on neutralization or infectivity., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 285
  • 文献情報:
    Prahl M et al. Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy. Nat Commun 2022 Jul;13(1):4422
    Prahl M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 286
  • 文献情報:
    Sung PS et al. Inhibition of SARS-CoV-2-mediated thromboinflammation by CLEC2.Fc. EMBO Mol Med 2023 Jul;15(7):e16351
    Sung PS et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 287
  • 文献情報:
    Alena Reguzova et al., A novel multi-antigenic parapoxvirus-based vaccine demonstrates efficacy in protecting hamsters and non-human primates against SARS-CoV-2 challenge., Research Square., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 288
  • 文献情報:
    Park SB et al. SARS-CoV-2 omicron variants harbor spike protein mutations responsible for their attenuated fusogenic phenotype. Commun Biol 2023 May;6(1):556
    Park SB et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 289
  • 文献情報:
    Tsuji S et al. SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nat Aging 2022 Feb;2(2):115-124
    Tsuji S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 290
  • 文献情報:
    Asiedu SO et al. Mycolactone: A Broad Spectrum Multitarget Antiviral Active in the Picomolar Range for COVID-19 Prevention and Cure. Int J Mol Sci 2023 Apr;24(8)
    Asiedu SO et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 291
  • 文献情報:
    Satish Pillai et al., A Novel Viral Assembly Inhibitor Blocks SARS-CoV-2 Replication in Airway Epithelial Cells., Research Square., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 292
  • 文献情報:
    Lebrun L et al. SARS-Cov-2 infection and neuropathological findings: a report of 18 cases and review of the literature. Acta Neuropathol Commun 2023 May;11(1):78
    Lebrun L et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 293
  • 文献情報:
    Lorenzo MM et al. Vaccinia Virus Strain MVA Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Glycoprotein Induces Robust Protection and Prevents Brain Infection in Mouse and Hamster Models. Vaccines (Basel) 2023 May;11(5)
    Lorenzo MM et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 294
  • 文献情報:
    Swain LA et al. Acute severe hepatitis as a presenting symptom in clinically stable patients admitted with SARS-CoV-2 Omicron infection. Hepatol Commun 2023 Apr;7(4)
    Swain LA et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 295
  • 文献情報:
    Mohammad TSH et al. In Silico Binding of 2-Aminocyclobutanones to SARS-CoV-2 Nsp13 Helicase and Demonstration of Antiviral Activity. Int J Mol Sci 2023 Mar;24(6)
    Mohammad TSH et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 296
  • 文献情報:
    Metzler M et al. SARS-CoV-2 Variants Show Different Host Cell Proteome Profiles With Delayed Immune Response Activation in Omicron-Infected Cells. Mol Cell Proteomics 2023 May;22(5):100537
    Metzler M et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 297
  • 文献情報:
    Horndler L et al. Decreased breadth of the antibody response to the spike protein of SARS-CoV-2 after repeated vaccination. Front Immunol 2023;14:1157263
    Horndler L et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 298
  • 文献情報:
    Bussani R et al. Persistent SARS-CoV-2 infection in patients seemingly recovered from COVID-19. J Pathol 2023 Mar;259(3):254-263
    Bussani R et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 299
  • 文献情報:
    Furusawa Y et al. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 2023 May;91:104561
    Furusawa Y et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 300
  • 文献情報:
    Luo Y et al. High-throughput screening of spike variants uncovers the key residues that alter the affinity and antigenicity of SARS-CoV-2. Cell Discov 2023 Apr;9(1):40
    Luo Y et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 301
  • 文献情報:
    Piranej S et al. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor. bioRxiv 2023 Feb;
    Piranej S et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 302
  • 文献情報:
    Meseguer S et al. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023;14:1066493
    Meseguer S et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 303
  • 文献情報:
    Brogna C et al. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci 2023 Feb;24(4)
    Brogna C et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 304
  • 文献情報:
    Ham Y et al. The SpACE-CCM: A facile and versatile cell culture medium-based biosensor for detection of SARS-CoV-2 spike-ACE2 interaction. Biosens Bioelectron 2023 May;227:115169
    Ham Y et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 305
  • 文献情報:
    Cappelletto A et al. SARS-CoV-2 Spike protein activates TMEM16F-mediated platelet procoagulant activity. Front Cardiovasc Med 2022;9:1013262
    Cappelletto A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 306
  • 文献情報:
    Massimo M et al. Haemorrhage of human foetal cortex associated with SARS-CoV-2 infection. Brain 2023 Mar;146(3):1175-1185
    Massimo M et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 307
  • 文献情報:
    Wu CT et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023 Jan;186(1):112-130.e20
    Wu CT et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 308
  • 文献情報:
    Muñoz-Alía MÁ et al. Surface-modified measles vaccines encoding oligomeric, fusion-stabilized SARS-CoV-2 spike glycoproteins bypass measles seropositivity, boosting neutralizing antibody responses to omicron and historical variants. bioRxiv 2022 Dec;
    Muñoz-Alía MÁ et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 309
  • 文献情報:
    Reyes S et al. Metal organic framework encapsulated tamavidin-Gluc reporter: application in COVID-19 spike antigen bioluminescent immunoassay. Sens Diagn 2022 Nov;1(6):1198-1208
    Reyes S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 310
  • 文献情報:
    Biering SB et al. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-&#x3B2; signaling. Nat Commun 2022 Dec;13(1):7630
    Biering SB et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 311
  • 文献情報:
    Meyer Zu Natrup C et al. Stabilized recombinant SARS-CoV-2 spike antigen enhances vaccine immunogenicity and protective capacity. J Clin Invest 2022 Dec;132(24)
    Meyer Zu Natrup C et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 312
  • 文献情報:
    Peng R et al. Human ZBP1 induces cell death-independent inflammatory signaling via RIPK3 and RIPK1. EMBO Rep 2022 Dec;23(12):e55839
    Peng R et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 313
  • 文献情報:
    Petros BA et al. Multimodal surveillance of SARS-CoV-2 at a university enables development of a robust outbreak response framework. Med 2022 Dec;3(12):883-900.e13
    Petros BA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 314
  • 文献情報:
    Gupta RK et al. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral&#xA0;spread. EMBO J 2022 Nov;41(22):e111653
    Gupta RK et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 315
  • 文献情報:
    Prout A et al. Functional profiling of Covid 19 vaccine candidate by flow virometry. Vaccine 2022 Sep;40(37):5529-5536
    Prout A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 316
  • 文献情報:
    Takeda R et al. Antiviral effect of cetylpyridinium chloride in mouthwash on SARS-CoV-2. Sci Rep 2022 Aug;12(1):14050
    Takeda R et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 317
  • 文献情報:
    Su P et al. Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice. Mol Brain 2022 Aug;15(1):71
    Su P et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 318
  • 文献情報:
    Narayan R et al. Efficient elimination of airborne pathogens: a study on&#xA0;aerosolized Mycobacterium tuberculosis and SARS-CoV-2 using ZeBox technology. J Hosp Infect 2022 Nov;129:17-21
    Narayan R et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 319
  • 文献情報:
    Mei S et al. Immunogenicity of a vaccinia virus-based severe acute respiratory syndrome coronavirus 2 vaccine candidate. Front Immunol 2022;13:911164
    Mei S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 320
  • 文献情報:
    Macedo S et al. Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. Eur Thyroid J 2022 Aug;11(4)
    Macedo S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 321
  • 文献情報:
    Gao SY et al. Nanocell COVID-19 vaccine triggers a novel immune response pathway producing high-affinity antibodies which neutralize all variants of concern. Front Immunol 2022;13:1038562
    Gao SY et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 322
  • 文献情報:
    Normandin E et al. High-depth sequencing characterization of viral dynamics across tissues in fatal COVID-19 reveals compartmentalized infection. Nat Commun 2023 Feb;14(1):574
    Normandin E et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 323
  • 文献情報:
    Chen YT et al. Methotrexate inhibition of SARS-CoV-2 entry, infection and inflammation revealed by bioinformatics approach and a hamster model. Front Immunol 2022;13:1080897
    Chen YT et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 324
  • 文献情報:
    Fraternale A et al. Targeting SARS-CoV-2 by synthetic dual-acting thiol compounds that inhibit Spike/ACE2 interaction and viral protein production. FASEB J 2023 Feb;37(2):e22741
    Fraternale A et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 325
  • 文献情報:
    Ogura H et al. Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19. Nat Commun 2022 Dec;13(1):7063
    Ogura H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 326
  • 文献情報:
    Kimura I et al. The SARS-CoV-2 spike S375F mutation characterizes the Omicron BA.1 variant. iScience 2022 Dec;25(12):105720
    Kimura I et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 327
  • 文献情報:
    Kim K et al. Translation suppression underlies the restrained COVID-19 mRNA vaccine response in the high-risk immunocompromised group. Front Immunol 2022;13:1020165
    Kim K et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 328
  • 文献情報:
    Lista MJ et al. The P681H Mutation in the Spike Glycoprotein of the Alpha Variant of SARS-CoV-2 Escapes IFITM Restriction and Is Necessary for Type I Interferon Resistance. J Virol 2022 Dec;96(23):e0125022
    Lista MJ et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 329
  • 文献情報:
    Nasser H et al. Monitoring fusion kinetics of viral and target cell membranes in living cells using a SARS-CoV-2 spike-protein-mediated membrane fusion assay. STAR Protoc 2022 Dec;3(4):101773
    Nasser H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 330
  • 文献情報:
    Lu Y et al. SARS-CoV-2 down-regulates ACE2 through lysosomal degradation. Mol Biol Cell 2022 Dec;33(14):ar147
    Lu Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 331
  • 文献情報:
    Tan TS et al. Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike. J Virol 2022 Oct;96(20):e0116222
    Tan TS et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 332
  • 文献情報:
    Kiyan Y et al. Calcium dobesilate reduces SARS-CoV-2 entry into endothelial cells by inhibiting virus binding to heparan sulfate. Sci Rep 2022 Oct;12(1):16878
    Kiyan Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 333
  • 文献情報:
    Weil T et al. Advanced Molecular Tweezers with Lipid Anchors against SARS-CoV-2 and Other Respiratory Viruses. JACS Au 2022 Sep;2(9):2187-2202
    Weil T et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 334
  • 文献情報:
    Kumar CS et al. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022 Oct;8(10):2119-2132
    Kumar CS et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 335
  • 文献情報:
    Vanhulle E et al. Carbohydrate-binding protein from stinging nettle as fusion inhibitor for SARS-CoV-2 variants of concern. Front Cell Infect Microbiol 2022;12:989534
    Vanhulle E et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 336
  • 文献情報:
    Aicher SM et al. Species-Specific Molecular Barriers to SARS-CoV-2 Replication in Bat Cells. J Virol 2022 Jul;96(14):e0060822
    Aicher SM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 337
  • 文献情報:
    Shimizu K et al. A single immunization with cellular vaccine confers dual protection against SARS-CoV-2 and cancer. Cancer Sci 2022 Aug;113(8):2536-2547
    Shimizu K et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 338
  • 文献情報:
    Bullock HA et al. Probable vertical transmission of Alpha variant of concern (B.1.1.7) with evidence of SARS-CoV-2 infection in the syncytiotrophoblast, a case report. Front Med (Lausanne) 2022;9:1099408
    Bullock HA et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 339
  • 文献情報:
    Kong W et al. Neuropilin-1 Mediates SARS-CoV-2 Infection of Astrocytes in Brain Organoids, Inducing Inflammation Leading to Dysfunction and Death of Neurons. mBio 2022 Dec;13(6):e0230822
    Kong W et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 340
  • 文献情報:
    Yaron TM et al. Host protein kinases required for SARS-CoV-2 nucleocapsid phosphorylation and viral replication. Sci Signal 2022 Oct;15(757):eabm0808
    Yaron TM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 341
  • 文献情報:
    Song J et al. LRRC15 inhibits SARS-CoV-2 cellular entry in trans. PLoS Biol 2022 Oct;20(10):e3001805
    Song J et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 342
  • 文献情報:
    Zhou Y et al. A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol 2023 Jan;41(1):128-139
    Zhou Y et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 343
  • 文献情報:
    Vanslambrouck JM et al. Enhanced metanephric specification to functional proximal tubule enables toxicity screening and infectious disease modelling in kidney organoids. Nat Commun 2022 Oct;13(1):5943
    Vanslambrouck JM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 344
  • 文献情報:
    John SP et al. Small-molecule screening identifies Syk kinase inhibition and rutaecarpine as modulators of macrophage training and SARS-CoV-2 infection. Cell Rep 2022 Oct;41(1):111441
    John SP et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 345
  • 文献情報:
    Agostinis C et al. SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability. Front Immunol 2022;13:957224
    Agostinis C et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 346
  • 文献情報:
    Giannakopoulos S et al. In vitro evidence against productive SARS-CoV-2 infection of human testicular cells: Bystander effects of infection mediate testicular injury. PLoS Pathog 2023 May;19(5):e1011409
    Giannakopoulos S et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 347
  • 文献情報:
    Drewry DH et al. Identification and Utilization of a Chemical Probe to Interrogate the Roles of PIKfyve in the Lifecycle of &#x3B2;-Coronaviruses. J Med Chem 2022 Oct;65(19):12860-12882
    Drewry DH et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 348
  • 文献情報:
    Wee LE et al. Detection of viable SARS-CoV-2 in deep respiratory specimens despite negative nasopharyngeal SARS-CoV-2 RT-PCR: Occult COVID-19 as an unsuspected cause of pulmonary infiltrates in immunocompromised patients. IDCases 2022;30:e01611
    Wee LE et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 349
  • 文献情報:
    Gourdelier M et al. Optimized production and fluorescent labeling of SARS-CoV-2 virus-like particles. Sci Rep 2022 Aug;12(1):14651
    Gourdelier M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 350
  • 文献情報:
    Jin JC et al. SARS CoV-2 detected in neonatal stool remote from maternal COVID-19 during pregnancy. Pediatr Res 2023 Apr;93(5):1375-1382
    Jin JC et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 351
  • 文献情報:
    Hawman DW et al. Replicating RNA platform enables rapid response to the SARS-CoV-2 Omicron variant and elicits enhanced protection in na&#xEF;ve hamsters compared to ancestral vaccine. EBioMedicine 2022 Sep;83:104196
    Hawman DW et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 352
  • 文献情報:
    Silva-Aguiar RP et al. SARS-CoV-2 spike protein inhibits megalin-mediated albumin endocytosis in proximal tubule epithelial cells. Biochim Biophys Acta Mol Basis Dis 2022 Dec;1868(12):166496
    Silva-Aguiar RP et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 353
  • 文献情報:
    Tien CF et al. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience 2022 Aug;25(8):104709
    Tien CF et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 354
  • 文献情報:
    Baumeier C et al. Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. Int J Mol Sci 2022 Jun;23(13)
    Baumeier C et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 355
  • 文献情報:
    Park H et al. TMED3 Complex Mediates ER Stress-Associated Secretion of CFTR, Pendrin, and SARS-CoV-2 Spike. Adv Sci (Weinh) 2022 Aug;9(24):e2105320
    Park H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 356
  • 文献情報:
    Sefik E et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022 Jun;606(7914):585-593
    Sefik E et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 357
  • 文献情報:
    Hassler L et al. Evidence For and Against Direct Kidney Infection by SARS-CoV-2 in Patients with COVID-19. Clin J Am Soc Nephrol 2021 Jun;
    Hassler L et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 358
  • 文献情報:
    Porter LM et al. Cigarette smoke preferentially induces full length ACE2 expression in differentiated primary human airway cultures but does not alter the efficiency of cellular SARS-CoV-2 infection. Heliyon 2023 Mar;9(3):e14383
    Porter LM et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 359
  • 文献情報:
    Zanon M et al. Liver pathology in COVID-19 related death and leading role of autopsy in the pandemic. World J Gastroenterol 2023 Jan;29(1):200-220
    Zanon M et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 360
  • 文献情報:
    Yamamoto Y et al. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. Int J Mol Sci 2022 Dec;24(1)
    Yamamoto Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 361
  • 文献情報:
    Yamamoto Y et al. SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Int J Mol Sci 2022 Dec;23(24)
    Yamamoto Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 362
  • 文献情報:
    Yeh CT et al. Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines 2022 Nov;10(11)
    Yeh CT et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 363
  • 文献情報:
    Chan JF et al. A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARS-CoV-2 and MERS-CoV infection in&#xA0;vivo. Cell Rep Med 2022 Oct;3(10):100774
    Chan JF et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 364
  • 文献情報:
    Gellenoncourt S et al. The Spike-Stabilizing D614G Mutation Interacts with S1/S2 Cleavage Site Mutations To Promote the Infectious Potential of SARS-CoV-2 Variants. J Virol 2022 Oct;96(19):e0130122
    Gellenoncourt S et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 365
  • 文献情報:
    Wong YP et al. SARS-CoV-2 Infection in Pregnancy: Placental Histomorphological Patterns, Disease Severity and Perinatal Outcomes. Int J Environ Res Public Health 2022 Aug;19(15)
    Wong YP et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 366
  • 文献情報:
    Sim JR et al. Amelioration of SARS-CoV-2 infection by ANO6 phospholipid scramblase inhibition. Cell Rep 2022 Jul;40(3):111117
    Sim JR et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 367
  • 文献情報:
    Jungwirth J et al. D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir. Int J Mol Sci 2022 Jun;23(13)
    Jungwirth J et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 368
  • 文献情報:
    Wettstein L et al. Peptidomimetic inhibitors of TMPRSS2 block SARS-CoV-2 infection in cell culture. Commun Biol 2022 Jul;5(1):681
    Wettstein L et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 369
  • 文献情報:
    Willett BJ et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol 2022 Aug;7(8):1161-1179
    Willett BJ et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 370
  • 文献情報:
    Mitsunaga M et al. Antimicrobial strategy for targeted elimination of different microbes, including bacterial, fungal and viral pathogens. Commun Biol 2022 Jul;5(1):647
    Mitsunaga M et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 371
  • 文献情報:
    Escalera A et al. Protocol to isolate and assess spike protein cleavage in SARS-CoV-2 variants obtained from clinical COVID-19 samples. STAR Protoc 2022 Sep;3(3):101502
    Escalera A et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 372
  • 文献情報:
    Zhou Y et al. A comprehensive SARS-CoV-2-human protein-protein interactome network identifies pathobiology and host-targeting therapies for COVID-19. Res Sq 2022 Jun;
    Zhou Y et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 373
  • 文献情報:
    Kawano H et al. Fulminant Myocarditis 24 Days after Coronavirus Disease Messenger Ribonucleic Acid Vaccination. Intern Med 2022 Aug;61(15):2319-2325
    Kawano H et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 374
  • 文献情報:
    Roessler J et al. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023 Oct;11(11)
    Roessler J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 375
  • 文献情報:
    Hagelauer E et al. Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists. Viruses 2023 Nov;15(12)
    Hagelauer E et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 376
  • 文献情報:
    Stewart H et al. Tetherin antagonism by SARS-CoV-2 ORF3a and spike protein enhances virus release. EMBO Rep 2023 Dec;24(12):e57224
    Stewart H et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 377
  • 文献情報:
    Styles CT et al. Propylene glycol inactivates respiratory viruses and prevents airborne transmission. EMBO Mol Med 2023 Dec;15(12):e17932
    Styles CT et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 378
  • 文献情報:
    Angioni R et al. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Rep Med 2023 Nov;4(11):101266
    Angioni R et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 379
  • 文献情報:
    Dey D et al. A single C-terminal residue controls SARS-CoV-2 spike trafficking and incorporation into VLPs. Nat Commun 2023 Dec;14(1):8358
    Dey D et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed