価格表

在庫・価格 : 2025年04月26日 21時56分 現在

商品名 商品コード メーカー 包装 価格 在庫 リスト
Anti-SARS-CoV/SARS-CoV-2 (COVID-19) Nucleocapsid, Mouse-Mono(6H3)
データシート
GTX632269 GNTジーンテックス
GeneTex International Corporation
100 μl ¥85,000 1個 追加

在庫・価格 : 2025年04月26日 21時56分 現在

Anti-SARS-CoV/SARS-CoV-2 (COVID-19) Nucleocapsid, Mouse-Mono(6H3)

  • 商品コード:GTX632269
  • メーカー:GNT
  • 包装:100μl
  • 価格: ¥85,000
  • 在庫:1個
使用文献
No. 文献情報 備考 参照
1 Tang W.F. et al., Tang W.F., Biomedical Journal, 2021

PubMed
2 Li J et al. Microfluidic Magneto Immunosensor for Rapid, High Sensitivity Measurements of SARS-CoV-2 Nucleocapsid Protein in Serum. ACS Sens 2021 03;6(3):1270-1278
Li J et al
2021/01/01
PubMed
3 Tanimoto K. et al., Tanimoto K., bioRxiv, 2021

PubMed
4 Moustaqil M et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 2021 Dec;10(1):178-195
Moustaqil M et al
2021/01/01
PubMed
5 Kotaki T et al. A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Sci Rep 2021 01;11(1):2229
Kotaki T et al
2021/01/01
PubMed
6 Gopal V et al. Zinc-embedded fabrics inactivate SARS-CoV-2 and influenza A virus. bioRxiv 2020 Nov;
Gopal V et al
2020/01/01
PubMed
7 Zhang Y et al. A bacterial artificial chromosome (BAC)-vectored noninfectious replicon of SARS-CoV-2. Antiviral Res 2021 01;185:104974
Zhang Y et al
2021/01/01
PubMed
8 Duarte-Neto AN et al. Testicular pathology in fatal COVID-19: A descriptive autopsy study. Andrology 2021 Jul;
Duarte-Neto AN et al
2021/01/01
PubMed
9 Gopal V et al. Zinc-Embedded Polyamide Fabrics Inactivate SARS-CoV-2 and Influenza A Virus. ACS Appl Mater Interfaces 2021 Jul;13(26):30317-30325
Gopal V et al
2021/01/01
PubMed
10 Sasaki M et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021 01;17(1):e1009233
Sasaki M et al
2021/01/01
PubMed
11 Matsuura R et al. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO<sub>2</sub> Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021 05;13(5)
Matsuura R et al
2021/01/01
PubMed
12 Ciccosanti F et al. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021 06;190:105064
Ciccosanti F et al
2021/01/01
PubMed
13 Mou H et al. Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathog 2021 04;17(4):e1009501
Mou H et al
2021/01/01
PubMed
14 Di Domenico M et al. Detection of SARS-COV-2 Proteins Using an ELISA Test. Diagnostics (Basel) 2021 Apr;11(4)
Di Domenico M et al
2021/01/01
PubMed
15 Duarte-Neto AN et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. EClinicalMedicine 2021 May;35:100850
Duarte-Neto AN et al
2021/01/01
PubMed
16 Martin MDGM et al. Postmortem brain 7T MRI with minimally invasive pathological correlation in deceased COVID-19 subjects. Insights Imaging 2022 Jan;13(1):7
Martin MDGM et al
2022/01/01
PubMed
17 Duarte-Neto AN et al. Ultrasound-Guided Minimally Invasive Tissue Sampling: A Minimally Invasive Autopsy Strategy During the COVID-19 Pandemic in Brazil, 2020. Clin Infect Dis 2021 12;73(Suppl_5):S442-S453
Duarte-Neto AN et al
2021/01/01
PubMed
18 Serra AM et al. SARS-CoV-2 identification in an acute appendicitis case: Acute abdomen as manifestation of Multisystem Inflammatory Syndrome in a child with COVID-19. Braz J Infect Dis ;25(6):101651
Serra AM et al
PubMed
19 Li X et al. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell Mol Immunol 2022 01;19(1):67-78
Li X et al
2022/01/01
PubMed
20 Samper IC et al. Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sens 2021 11;6(11):4067-4075
Samper IC et al
2021/01/01
PubMed
21 Kim DH et al. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci Rep 2021 11;11(1):21462
Kim DH et al
2021/01/01
PubMed
22 Magalh達es AC et al. InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens 2022 Mar;11(3)
Magalh達es AC et al
2022/01/01
PubMed
23 Madden PJ et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. bioRxiv 2022 Mar;
Madden PJ et al
2022/01/01
PubMed
24 Yamamotoya T et al. Prolyl isomerase Pin1 plays an essential role in SARS-CoV-2 proliferation, indicating its possibility as a novel therapeutic target. Sci Rep 2021 Sep;11(1):18581
Yamamotoya T et al
2021/01/01
PubMed
25 Tanimoto K et al. Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Sci Rep 2021 Aug;11(1):16629
Tanimoto K et al
2021/01/01
PubMed
26 Lyonnais S et al. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep 2021 Jun;11(1):11885
Lyonnais S et al
2021/01/01
PubMed
27 Tang WF et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 2021 Jun;44(3):293-303
Tang WF et al
2021/01/01
PubMed
28 Madden P et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. Res Sq 2022 Apr;
Madden P et al
2022/01/01
PubMed
29 Ariumi Y. Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection. J Virol 2022 Mar;96(6):e0000222
Ariumi Y
2022/01/01
PubMed
30 Chen PH et al. Saliva-based COVID-19 detection: A rapid antigen test of SARS-CoV-2 nucleocapsid protein using an electrical-double-layer gated field-effect transistor-based biosensing system. Sens Actuators B Chem 2022 Apr;357:131415
Chen PH et al
2022/01/01
PubMed
31 Tang W-F et al. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024 Apr;68(4):e0095623
Tang W-F et al
2024/01/01
PubMed
32 Asano R et al. Three Types of Demyelination, Perivenous, Confluent, and Perineuronal Nets-Rich in a COVID-19 Patient With Meningoencephalomyelitis. Cureus 2023 Dec;15(12):e51049
Asano R et al
2023/01/01
PubMed
33 R Asano et al., Three Types of Demyelination, Perivenous, Confluent, and Perineuronal Nets-Rich in a COVID-19 Patient With Meningoencephalomyelitis., Cureus., 2023.,

PubMed
34 Yang CF et al. Human ACE2 protein is a molecular switch controlling the mode of SARS-CoV-2 transmission. J Biomed Sci 2023 Oct;30(1):87
Yang CF et al
2023/01/01
PubMed
35 Ma J et al. Extracts of <i>Thesium chinense</i> inhibit SARS-CoV-2 and inflammation <i>in&#xA0;vitro</i>. Pharm Biol 2023 Sep;61(1):1446-1453
Ma J et al
2023/01/01
PubMed
36 Swain J et al. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells. iScience 2023 Aug;26(8):107384
Swain J et al
2023/01/01
PubMed
37 McMahon A et al. High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization. PLoS Pathog 2023 Jun;19(6):e1011484
McMahon A et al
2023/01/01
PubMed
38 Carrell C et al. Capillary driven microfluidic sequential flow device for point-of-need ELISA: COVID-19 serology testing. Anal Methods 2023 Jun;15(22):2721-2728
Carrell C et al
2023/01/01
PubMed
39 Williams DM et al. Establishing SARS-CoV-2 membrane protein-specific antibodies as a valuable serological target via high-content microscopy. iScience 2023 Jul;26(7):107056
Williams DM et al
2023/01/01
PubMed
40 Hou P et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy 2023 Feb;19(2):551-569
Hou P et al
2023/01/01
PubMed
41 Tamai K et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep Methods 2022 Oct;2(10):100314
Tamai K et al
2022/01/01
PubMed
42 Kumar CS et al. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022 Oct;8(10):2119-2132
Kumar CS et al
2022/01/01
PubMed
43 Yeh CT et al. Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines 2022 Nov;10(11)
Yeh CT et al
2022/01/01
PubMed
  • No.: 1
  • 文献情報:
    Tang W.F. et al., Tang W.F., Biomedical Journal, 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 2
  • 文献情報:
    Li J et al. Microfluidic Magneto Immunosensor for Rapid, High Sensitivity Measurements of SARS-CoV-2 Nucleocapsid Protein in Serum. ACS Sens 2021 03;6(3):1270-1278
    Li J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 3
  • 文献情報:
    Tanimoto K. et al., Tanimoto K., bioRxiv, 2021

  • 備考:
  • 参照:
    PubMed
  • No.: 4
  • 文献情報:
    Moustaqil M et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 2021 Dec;10(1):178-195
    Moustaqil M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 5
  • 文献情報:
    Kotaki T et al. A PCR amplicon-based SARS-CoV-2 replicon for antiviral evaluation. Sci Rep 2021 01;11(1):2229
    Kotaki T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 6
  • 文献情報:
    Gopal V et al. Zinc-embedded fabrics inactivate SARS-CoV-2 and influenza A virus. bioRxiv 2020 Nov;
    Gopal V et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 7
  • 文献情報:
    Zhang Y et al. A bacterial artificial chromosome (BAC)-vectored noninfectious replicon of SARS-CoV-2. Antiviral Res 2021 01;185:104974
    Zhang Y et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 8
  • 文献情報:
    Duarte-Neto AN et al. Testicular pathology in fatal COVID-19: A descriptive autopsy study. Andrology 2021 Jul;
    Duarte-Neto AN et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 9
  • 文献情報:
    Gopal V et al. Zinc-Embedded Polyamide Fabrics Inactivate SARS-CoV-2 and Influenza A Virus. ACS Appl Mater Interfaces 2021 Jul;13(26):30317-30325
    Gopal V et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 10
  • 文献情報:
    Sasaki M et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathog 2021 01;17(1):e1009233
    Sasaki M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 11
  • 文献情報:
    Matsuura R et al. SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO<sub>2</sub> Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein. Viruses 2021 05;13(5)
    Matsuura R et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 12
  • 文献情報:
    Ciccosanti F et al. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021 06;190:105064
    Ciccosanti F et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 13
  • 文献情報:
    Mou H et al. Mutations derived from horseshoe bat ACE2 orthologs enhance ACE2-Fc neutralization of SARS-CoV-2. PLoS Pathog 2021 04;17(4):e1009501
    Mou H et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 14
  • 文献情報:
    Di Domenico M et al. Detection of SARS-COV-2 Proteins Using an ELISA Test. Diagnostics (Basel) 2021 Apr;11(4)
    Di Domenico M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 15
  • 文献情報:
    Duarte-Neto AN et al. An autopsy study of the spectrum of severe COVID-19 in children: From SARS to different phenotypes of MIS-C. EClinicalMedicine 2021 May;35:100850
    Duarte-Neto AN et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 16
  • 文献情報:
    Martin MDGM et al. Postmortem brain 7T MRI with minimally invasive pathological correlation in deceased COVID-19 subjects. Insights Imaging 2022 Jan;13(1):7
    Martin MDGM et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 17
  • 文献情報:
    Duarte-Neto AN et al. Ultrasound-Guided Minimally Invasive Tissue Sampling: A Minimally Invasive Autopsy Strategy During the COVID-19 Pandemic in Brazil, 2020. Clin Infect Dis 2021 12;73(Suppl_5):S442-S453
    Duarte-Neto AN et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 18
  • 文献情報:
    Serra AM et al. SARS-CoV-2 identification in an acute appendicitis case: Acute abdomen as manifestation of Multisystem Inflammatory Syndrome in a child with COVID-19. Braz J Infect Dis ;25(6):101651
    Serra AM et al
  • 備考:
  • 参照:
    PubMed
  • No.: 19
  • 文献情報:
    Li X et al. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell Mol Immunol 2022 01;19(1):67-78
    Li X et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 20
  • 文献情報:
    Samper IC et al. Electrochemical Capillary-Flow Immunoassay for Detecting Anti-SARS-CoV-2 Nucleocapsid Protein Antibodies at the Point of Care. ACS Sens 2021 11;6(11):4067-4075
    Samper IC et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 21
  • 文献情報:
    Kim DH et al. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci Rep 2021 11;11(1):21462
    Kim DH et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 22
  • 文献情報:
    Magalh達es AC et al. InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens 2022 Mar;11(3)
    Magalh達es AC et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 23
  • 文献情報:
    Madden PJ et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. bioRxiv 2022 Mar;
    Madden PJ et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 24
  • 文献情報:
    Yamamotoya T et al. Prolyl isomerase Pin1 plays an essential role in SARS-CoV-2 proliferation, indicating its possibility as a novel therapeutic target. Sci Rep 2021 Sep;11(1):18581
    Yamamotoya T et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 25
  • 文献情報:
    Tanimoto K et al. Inhibiting SARS-CoV-2 infection in vitro by suppressing its receptor, angiotensin-converting enzyme 2, via aryl-hydrocarbon receptor signal. Sci Rep 2021 Aug;11(1):16629
    Tanimoto K et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 26
  • 文献情報:
    Lyonnais S et al. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep 2021 Jun;11(1):11885
    Lyonnais S et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 27
  • 文献情報:
    Tang WF et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed J 2021 Jun;44(3):293-303
    Tang WF et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 28
  • 文献情報:
    Madden P et al. An immunoPET probe to SARS-CoV-2 reveals early infection of the male genital tract in rhesus macaques. Res Sq 2022 Apr;
    Madden P et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 29
  • 文献情報:
    Ariumi Y. Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection. J Virol 2022 Mar;96(6):e0000222
    Ariumi Y
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 30
  • 文献情報:
    Chen PH et al. Saliva-based COVID-19 detection: A rapid antigen test of SARS-CoV-2 nucleocapsid protein using an electrical-double-layer gated field-effect transistor-based biosensing system. Sens Actuators B Chem 2022 Apr;357:131415
    Chen PH et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 31
  • 文献情報:
    Tang W-F et al. BPR3P0128, a non-nucleoside RNA-dependent RNA polymerase inhibitor, inhibits SARS-CoV-2 variants of concern and exerts synergistic antiviral activity in combination with remdesivir. Antimicrob Agents Chemother 2024 Apr;68(4):e0095623
    Tang W-F et al
    2024/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 32
  • 文献情報:
    Asano R et al. Three Types of Demyelination, Perivenous, Confluent, and Perineuronal Nets-Rich in a COVID-19 Patient With Meningoencephalomyelitis. Cureus 2023 Dec;15(12):e51049
    Asano R et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 33
  • 文献情報:
    R Asano et al., Three Types of Demyelination, Perivenous, Confluent, and Perineuronal Nets-Rich in a COVID-19 Patient With Meningoencephalomyelitis., Cureus., 2023.,

  • 備考:
  • 参照:
    PubMed
  • No.: 34
  • 文献情報:
    Yang CF et al. Human ACE2 protein is a molecular switch controlling the mode of SARS-CoV-2 transmission. J Biomed Sci 2023 Oct;30(1):87
    Yang CF et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 35
  • 文献情報:
    Ma J et al. Extracts of <i>Thesium chinense</i> inhibit SARS-CoV-2 and inflammation <i>in&#xA0;vitro</i>. Pharm Biol 2023 Sep;61(1):1446-1453
    Ma J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 36
  • 文献情報:
    Swain J et al. F-actin nanostructures rearrangements and regulation are essential for SARS-CoV-2 particle production in host pulmonary cells. iScience 2023 Aug;26(8):107384
    Swain J et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 37
  • 文献情報:
    McMahon A et al. High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization. PLoS Pathog 2023 Jun;19(6):e1011484
    McMahon A et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 38
  • 文献情報:
    Carrell C et al. Capillary driven microfluidic sequential flow device for point-of-need ELISA: COVID-19 serology testing. Anal Methods 2023 Jun;15(22):2721-2728
    Carrell C et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 39
  • 文献情報:
    Williams DM et al. Establishing SARS-CoV-2 membrane protein-specific antibodies as a valuable serological target via high-content microscopy. iScience 2023 Jul;26(7):107056
    Williams DM et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 40
  • 文献情報:
    Hou P et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy 2023 Feb;19(2):551-569
    Hou P et al
    2023/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 41
  • 文献情報:
    Tamai K et al. iPSC-derived mesenchymal cells that support alveolar organoid development. Cell Rep Methods 2022 Oct;2(10):100314
    Tamai K et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 42
  • 文献情報:
    Kumar CS et al. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022 Oct;8(10):2119-2132
    Kumar CS et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 43
  • 文献情報:
    Yeh CT et al. Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines 2022 Nov;10(11)
    Yeh CT et al
    2022/01/01
  • 備考:
  • 参照:
    PubMed