価格表

在庫・価格 : 2025年04月26日 15時28分 現在

商品名 商品コード メーカー 包装 価格 在庫 リスト
Anti-Ca2+ channel P/Q-type, alpha-1A subunit, Rabbit-Poly
データシート
152203 SS2シナプティックシステムズ
Synaptic Systems GmbH
50 μg ¥116,000
(未発注)
追加

在庫・価格 : 2025年04月26日 15時28分 現在

Anti-Ca2+ channel P/Q-type, alpha-1A subunit, Rabbit-Poly

  • 商品コード:152203
  • メーカー:SS2
  • 包装:50μg
  • 価格: ¥116,000
  • 在庫:無(未発注)
使用文献
No. 文献情報 備考 参照
1 Holderith N et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat. Neurosci. 2012 Jun;15(7):988-97
Holderith N et al
2012/01/01
application: EM PubMed
2 Spangler SA et al. Liprin-α2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. J. Cell Biol. 2013 Jun;201(6):915-28
Spangler SA et al
2013/01/01
application: ICC, species: rat PubMed
3 Shinoda Y et al. BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons. Front Synaptic Neurosci 2014;6:27
Shinoda Y et al
2014/01/01
application: ICC, species: rat PubMed
4 Lenkey N et al. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat Commun 2015 Apr;6:6557
Lenkey N et al
2015/01/01
application: EM PubMed
5 Wang SSH et al. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking. Neuron 2016 Aug;91(4):777-791
Wang SSH et al
2016/01/01
application: ICC, species: , KO PubMed
6 Althof D et al. Inhibitory and excitatory axon terminals share a common nano-architecture of their Cav2.1 (P/Q-type) Ca(2+) channels. Front Cell Neurosci 2015;9:315
Althof D et al
2015/01/01
application: EM PubMed
7 Thalhammer A et al. Alternative Splicing of P/Q-Type Ca<sup>2+</sup> Channels Shapes Presynaptic Plasticity. Cell Rep 2017 07;20(2):333-343
Thalhammer A et al
2017/01/01
application: ICC, species: rat PubMed
8 Grauel MK et al. RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proc. Natl. Acad. Sci. U.S.A. 2016 10;113(41):11615-11620
Grauel MK et al
2016/01/01
application: IHC, species: mouse PubMed
9 Etemad S et al. Differential neuronal targeting of a new and two known calcium channel &#x3B2;4 subunit splice variants correlates with their regulation of gene expression. J. Neurosci. 2014 Jan;34(4):1446-61
Etemad S et al
2014/01/01
application: ICC, species: mouse PubMed
10 Bomben VC et al. Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J. Neurosci. 2016 Jan;36(2):405-18
Bomben VC et al
2016/01/01
application: IHC, species: mouse PubMed
11 テ瑛tes T et al. Target Cell Type-Dependent Differences in Ca<sup>2+</sup> Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals. J Neurosci 2017 02;37(7):1910-1924
テ瑛tes T et al
2017/01/01
PubMed
12 Nishimune H et al. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 2016 06;6:27935
Nishimune H et al
2016/01/01
PubMed
13 Heck J et al. Transient Confinement of Ca<sub>V</sub>2.1 Ca<sup>2+</sup>-Channel Splice Variants Shapes Synaptic Short-Term Plasticity. Neuron 2019 07;103(1):66-79.e12
Heck J et al
2019/01/01
PubMed
14 Stephani F et al. Deletion of the Ca<sup>2+</sup> Channel Subunit &#x3B1;<sub>2</sub>&#x3B4;3 Differentially Affects Ca<sub>v</sub>2.1 and Ca<sub>v</sub>2.2 Currents in Cultured Spiral Ganglion Neurons Before and After the Onset of Hearing. Front Cell Neu
Stephani F et al
2019/01/01
PubMed
15 Opriナ殪reanu AM et al. Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep 2019 Oct;29(5):1082-1098.e10
Opriナ殪reanu AM et al
2019/01/01
PubMed
16 Bavassano C et al. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells. Stem Cells Dev 2017 11;26(22):1612-1625
Bavassano C et al
2017/01/01
PubMed
17 Han KA et al. Receptor protein tyrosine phosphatase delta is not essential for synapse maintenance or transmission at hippocampal synapses. Mol Brain 2020 06;13(1):94
Han KA et al
2020/01/01
PubMed
18 Holderith N et al. A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses. Cell Rep 2020 07;32(4):107968
Holderith N et al
2020/01/01
PubMed
19 Luo F et al. Neurexins cluster Ca<sup>2+</sup> channels within the presynaptic active zone. EMBO J 2020 04;39(7):e103208
Luo F et al
2020/01/01
PubMed
20 Ross JA et al. Multiple roles of integrin-&#x3B1;3 at the neuromuscular junction. J. Cell. Sci. 2017 05;130(10):1772-1784
Ross JA et al
2017/01/01
PubMed
21 Brockhaus J et al. &#x3B1;-Neurexins Together with &#x3B1;2&#x3B4;-1 Auxiliary Subunits Regulate Ca<sup>2+</sup> Influx through Ca<sub>v</sub>2.1 Channels. J Neurosci 2018 09;38(38):8277-8294
Brockhaus J et al
2018/01/01
PubMed
22 Kuijpers M et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron 2021 01;109(2):299-313.e9
Kuijpers M et al
2021/01/01
PubMed
23 Held RG et al. Synapse and Active Zone Assembly in the Absence of Presynaptic Ca<sup>2+</sup> Channels and Ca<sup>2+</sup> Entry. Neuron 2020 08;107(4):667-683.e9
Held RG et al
2020/01/01
PubMed
24 Bikbaev A et al. Auxiliary &#x3B1;2&#x3B4;1 and &#x3B1;2&#x3B4;3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development. J Neurosci 2020 06;40(25):4824-4841
Bikbaev A et al
2020/01/01
PubMed
25 Rebola N et al. Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies Contribute to the Diversity of Synaptic Function. Neuron 2019 11;104(4):693-710.e9
Rebola N et al
2019/01/01
PubMed
26 Brockmann MM et al. RIM-BP2 primes synaptic vesicles <i>via</i> recruitment of Munc13-1 at hippocampal mossy fiber synapses. Elife 2019 09;8
Brockmann MM et al
2019/01/01
PubMed
27 Siddig S et al. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Sci Adv 2020 04;6(16):eaay7193
Siddig S et al
2020/01/01
PubMed
28 Emperador-Melero J et al. Intact synapse structure and function after combined knockout of PTP&#x3B4;, PTP&#x3C3;, and LAR. Elife 2021 03;10
Emperador-Melero J et al
2021/01/01
PubMed
  • No.: 1
  • 文献情報:
    Holderith N et al. Release probability of hippocampal glutamatergic terminals scales with the size of the active zone. Nat. Neurosci. 2012 Jun;15(7):988-97
    Holderith N et al
    2012/01/01
  • 備考:
    application: EM
  • 参照:
    PubMed
  • No.: 2
  • 文献情報:
    Spangler SA et al. Liprin-&#x3B1;2 promotes the presynaptic recruitment and turnover of RIM1/CASK to facilitate synaptic transmission. J. Cell Biol. 2013 Jun;201(6):915-28
    Spangler SA et al
    2013/01/01
  • 備考:
    application: ICC, species: rat
  • 参照:
    PubMed
  • No.: 3
  • 文献情報:
    Shinoda Y et al. BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons. Front Synaptic Neurosci 2014;6:27
    Shinoda Y et al
    2014/01/01
  • 備考:
    application: ICC, species: rat
  • 参照:
    PubMed
  • No.: 4
  • 文献情報:
    Lenkey N et al. Tonic endocannabinoid-mediated modulation of GABA release is independent of the CB1 content of axon terminals. Nat Commun 2015 Apr;6:6557
    Lenkey N et al
    2015/01/01
  • 備考:
    application: EM
  • 参照:
    PubMed
  • No.: 5
  • 文献情報:
    Wang SSH et al. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking. Neuron 2016 Aug;91(4):777-791
    Wang SSH et al
    2016/01/01
  • 備考:
    application: ICC, species: , KO
  • 参照:
    PubMed
  • No.: 6
  • 文献情報:
    Althof D et al. Inhibitory and excitatory axon terminals share a common nano-architecture of their Cav2.1 (P/Q-type) Ca(2+) channels. Front Cell Neurosci 2015;9:315
    Althof D et al
    2015/01/01
  • 備考:
    application: EM
  • 参照:
    PubMed
  • No.: 7
  • 文献情報:
    Thalhammer A et al. Alternative Splicing of P/Q-Type Ca<sup>2+</sup> Channels Shapes Presynaptic Plasticity. Cell Rep 2017 07;20(2):333-343
    Thalhammer A et al
    2017/01/01
  • 備考:
    application: ICC, species: rat
  • 参照:
    PubMed
  • No.: 8
  • 文献情報:
    Grauel MK et al. RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proc. Natl. Acad. Sci. U.S.A. 2016 10;113(41):11615-11620
    Grauel MK et al
    2016/01/01
  • 備考:
    application: IHC, species: mouse
  • 参照:
    PubMed
  • No.: 9
  • 文献情報:
    Etemad S et al. Differential neuronal targeting of a new and two known calcium channel &#x3B2;4 subunit splice variants correlates with their regulation of gene expression. J. Neurosci. 2014 Jan;34(4):1446-61
    Etemad S et al
    2014/01/01
  • 備考:
    application: ICC, species: mouse
  • 参照:
    PubMed
  • No.: 10
  • 文献情報:
    Bomben VC et al. Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J. Neurosci. 2016 Jan;36(2):405-18
    Bomben VC et al
    2016/01/01
  • 備考:
    application: IHC, species: mouse
  • 参照:
    PubMed
  • No.: 11
  • 文献情報:
    テ瑛tes T et al. Target Cell Type-Dependent Differences in Ca<sup>2+</sup> Channel Function Underlie Distinct Release Probabilities at Hippocampal Glutamatergic Terminals. J Neurosci 2017 02;37(7):1910-1924
    テ瑛tes T et al
    2017/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 12
  • 文献情報:
    Nishimune H et al. Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep 2016 06;6:27935
    Nishimune H et al
    2016/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 13
  • 文献情報:
    Heck J et al. Transient Confinement of Ca<sub>V</sub>2.1 Ca<sup>2+</sup>-Channel Splice Variants Shapes Synaptic Short-Term Plasticity. Neuron 2019 07;103(1):66-79.e12
    Heck J et al
    2019/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 14
  • 文献情報:
    Stephani F et al. Deletion of the Ca<sup>2+</sup> Channel Subunit &#x3B1;<sub>2</sub>&#x3B4;3 Differentially Affects Ca<sub>v</sub>2.1 and Ca<sub>v</sub>2.2 Currents in Cultured Spiral Ganglion Neurons Before and After the Onset of Hearing. Front Cell Neu
    Stephani F et al
    2019/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 15
  • 文献情報:
    Opriナ殪reanu AM et al. Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep 2019 Oct;29(5):1082-1098.e10
    Opriナ殪reanu AM et al
    2019/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 16
  • 文献情報:
    Bavassano C et al. Bicistronic CACNA1A Gene Expression in Neurons Derived from Spinocerebellar Ataxia Type 6 Patient-Induced Pluripotent Stem Cells. Stem Cells Dev 2017 11;26(22):1612-1625
    Bavassano C et al
    2017/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 17
  • 文献情報:
    Han KA et al. Receptor protein tyrosine phosphatase delta is not essential for synapse maintenance or transmission at hippocampal synapses. Mol Brain 2020 06;13(1):94
    Han KA et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 18
  • 文献情報:
    Holderith N et al. A High-Resolution Method for Quantitative Molecular Analysis of Functionally Characterized Individual Synapses. Cell Rep 2020 07;32(4):107968
    Holderith N et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 19
  • 文献情報:
    Luo F et al. Neurexins cluster Ca<sup>2+</sup> channels within the presynaptic active zone. EMBO J 2020 04;39(7):e103208
    Luo F et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 20
  • 文献情報:
    Ross JA et al. Multiple roles of integrin-&#x3B1;3 at the neuromuscular junction. J. Cell. Sci. 2017 05;130(10):1772-1784
    Ross JA et al
    2017/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 21
  • 文献情報:
    Brockhaus J et al. &#x3B1;-Neurexins Together with &#x3B1;2&#x3B4;-1 Auxiliary Subunits Regulate Ca<sup>2+</sup> Influx through Ca<sub>v</sub>2.1 Channels. J Neurosci 2018 09;38(38):8277-8294
    Brockhaus J et al
    2018/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 22
  • 文献情報:
    Kuijpers M et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron 2021 01;109(2):299-313.e9
    Kuijpers M et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 23
  • 文献情報:
    Held RG et al. Synapse and Active Zone Assembly in the Absence of Presynaptic Ca<sup>2+</sup> Channels and Ca<sup>2+</sup> Entry. Neuron 2020 08;107(4):667-683.e9
    Held RG et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 24
  • 文献情報:
    Bikbaev A et al. Auxiliary &#x3B1;2&#x3B4;1 and &#x3B1;2&#x3B4;3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development. J Neurosci 2020 06;40(25):4824-4841
    Bikbaev A et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 25
  • 文献情報:
    Rebola N et al. Distinct Nanoscale Calcium Channel and Synaptic Vesicle Topographies Contribute to the Diversity of Synaptic Function. Neuron 2019 11;104(4):693-710.e9
    Rebola N et al
    2019/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 26
  • 文献情報:
    Brockmann MM et al. RIM-BP2 primes synaptic vesicles <i>via</i> recruitment of Munc13-1 at hippocampal mossy fiber synapses. Elife 2019 09;8
    Brockmann MM et al
    2019/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 27
  • 文献情報:
    Siddig S et al. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Sci Adv 2020 04;6(16):eaay7193
    Siddig S et al
    2020/01/01
  • 備考:
  • 参照:
    PubMed
  • No.: 28
  • 文献情報:
    Emperador-Melero J et al. Intact synapse structure and function after combined knockout of PTP&#x3B4;, PTP&#x3C3;, and LAR. Elife 2021 03;10
    Emperador-Melero J et al
    2021/01/01
  • 備考:
  • 参照:
    PubMed