Peptides Involved in Appetite Modulation

Sonia A Tucci, Lynsay Kobelis and Tim C Kirkham

University of Liverpool, Eleanor Rathbone Building, Bedford Street South, Liverpool, L69 7ZA, UK

Sonia Tucci is a Lecturer in Behavioral Neuroscience and Tim Kirkham is a Professor of Biopsychology, both at the University of Liverpool. Their research interests currently center on the pharmacological analysis of the controls of appetite and ingestive behavior, and particularly the role of central endocannabinoids in the regulation of appetite. Lynsay Kobelis is conducting doctoral research into opioid-cannabinoid interactions in feeding.

Introduction

Table 1a | Central appetite regulatory peptides: receptor classification, peptide and receptor localization.

Peptide	Receptors	Peptide mRNA localization (appetite related)	CNS receptor localization	References
		Orexigenic		
NPY	NPY Y_{1-6} : Y_1 and Y_5 , involved in feeding	ARC	Hypothalamus, hippocampus, AMY, piriform and cingulate cortices	239-240
AgRP	AgRP MC_{1-5} : MC_3 and MC_4 involved in feedingARCARC, PVN, AMY, spinal cord163, 170 241		163, 170, 241	
МСН	MCH ₁ MCH ₂	LH, perifornical area, zona incerta	Cerebral cortex, caudate- putamen, hippocampal formation, AMY, hypothalamus, THAL	242-243
Orexin	OX ₁ OX ₂	Posterolateral hypothalamus, perifornical area, LH, zona incerta	VMH, PVN, LPO, LC, hippocampus, tenia tecta and raphé nucleus	180-181
Galanin	GAL ₁₋₃	PVN, PFH, LH, and ARC	VMN, PVN, stria terminalis, piriform cortex, AMY	244-245
β-endorphin, [Met]enkephalin,δ: (β-endorphin, [Met]enkephalin),mRNA are widely distributed throughout the brain. POMC mRNA is restricted to ARCdifferential of for each sub with all pres		Widely distributed, with differential distribution for each subtype, with all present within hypothalamic nuclei	203, 246- 251	
		Anorexigenic		
α-MSH	MC_{1-5} : MC_3 and MC_4 involved in feeding	ARC	ARC, PVN, AMY, spinal cord	163, 170, 241
CART	Not identified	PVN, ARC, PBN, perifornical cells in the hypothalamus	Not identified	219, 252
NT	NT ₁₋₃	Median eminence, preoptic area PVN, supraoptic, VMN	Cerebral cortex, DH, VTA	253-254

It is generally considered that the expression of appetite is chemically coded in the hypothalamus through the interplay of hormonal and neural mechanisms.1 In brief, it is proposed that the hypothalamus houses opposing sets of neuronal circuitry: an appetite-stimulatory circuit and an appetite-inhibitory circuit.² These circuits are influenced by peripheral hormonal and afferent signals that provide feedback and neural integrative processing of nutritional status, energy intake and expenditure. The appetite-stimulatory circuit expresses orexigenic neurotransmitters which promote appetite, while anorexigenic neurotransmitters released by the inhibitory circuit

decrease appetite. In addition to modulation by signals originating in the periphery, these integrative functions are affected by a wide range of neural influences within the brain, reflecting sensory, cognitive, memory and affective processes.

This review provides a sketch of the increasing number of peptides that have been implicated in appetite regulation and energy homeostasis, and outlines the putative roles of most of the currently known players. The extensive literature on the physiological control of food intake, metabolism and body weight regulation is discussed in greater depth in several recent publications.³⁻¹¹ It should be

Table 1b Peripheral appetite regulatory peptides: receptor classification, peptide and receptor localization	Table 1b	Peripheral appetite	e regulatory peptides:	receptor classification.	, peptide and receptor localization.
--	----------	---------------------	------------------------	--------------------------	--------------------------------------

Peptide	Receptors	Peptide mRNA localization (appetite related)	CNS receptor localization	References
		Orexigenic		
Ghrelin	GHS-R1a	Neuronal group adjacent 3rd ventricle between DMN, VMN, PVN and ARC	Hypothalamus, hippocampus, VTA, pituitary gland, SN, DRN, VRN	226
		Anorexigenic		
Adiponectin	AdipoR1 and AdipoR2	Adipose tissue	ARC, area postrema	58-60
Leptin	OB-R (at least 5 isoforms; OB-Ra-e) OB-Rb important in regulation of food intake	Adipose tissue	ARC, VMN, DMN, LH, PVN	227-230
Insulin	IR-A IR-B IGF	β cells in pancreas Brain?	Olfactory bulb, hypothalamus, hippocampus, choroid plexus, cerebellum	44, 231
PYY ₃₋₃₆	NPY Y2 Endocrine L cells in GI tract DH, medial preoptic, lateral anterior, PVN, DMN tuberal, perifornical, ARC nuclei 97, 23		97, 232	
PP	NPY Y ₄ /Y ₅	PP cells in pancreas, PVN, ARC and SON	ARC, PVN, rostral forebrain, AMY, THAL, SN, LC, BS	
GLP-1	GLP-1R	NTS, ARC, PVN	ARC, PVN, VMN, SON 233	
ОХМ	GLP-1R?	NTS, BS	ARC, PVN, VMN, SON	130
Amylin	Modified calcitonin receptors, AMY ₁₋₃	β cells in pancreas	Area postrema, NTS, hypothalamus	135, 234
сск	CCK ₁ (CCK-A) CCK ₂ (CCK-B)	ARC, VMN, medial and lateral preoptic area, VTA	CCK ₁ : PVN, DMN, SON, NAcc, BS CCK ₂ : widely distributed	135-237
Bombesin and related peptides	BB ₁ BB ₂ bb ₃	Stomach, spinal cord, anterior hypothalamus, ARC, PVN, AMY, NAcc, BS	Basal forebrain magnocellular complex, AMY	152, 236, 238

noted that for the purposes of this review, appetitemodulating peptides are considered in terms of their peripheral or central origins and actions; however, most peptides that were originally thought to be exclusively synthesized in the periphery are now also known to be produced in the central nervous system (CNS). A summary of the featured peptides, along with their receptors and anatomical distributions, can be found in Table 1. Tables 2, 3 and 4 show the commonly used doses, agonists and antagonists of the peptides discussed.

Peripheral Peptides Regulating Appetite

Leptin

Leptin is a 146 amino acid, glycosylated protein. This adipokine is produced predominantly by white adipose tissue, although low levels of expression are also detected in the hypothalamus.^{12,13} Leptin

has been central to the investigation of appetite and body weight regulation since it was identified as the product of the *ob* gene. Genetic mutation of this gene is found in leptin-deficient, phenotypically hyperphagic and obese *ob/ob* mice. Furthermore, mutations in the leptin receptor gene are associated with obesity in *fa/fa* rats and *db/db* mice. In humans and animals, circulating leptin levels are directly related to the number and size of adipocytes, and so correlate better with total fat mass than with body weight.¹⁴

Leptin has been proposed to convey information to the hypothalamus regarding the amount of energy stored in adipose tissue. Increasing levels are suggested to suppress appetite and affect energy expenditure in order to regulate body weight. Administration of leptin has been found to reduce food intake in all species studied to date,¹⁵ including humans,¹⁶ non-human primates,¹⁷ rodents^{18,19} and sheep.²⁰

Table 2 Dorinhora	L'anorovigonia pontidos	Commonly used doces	agonists and antagonists
	and exigenic peptices	. Commonly used doses,	agonists and antagonists.

Peptide	Dose	Agonists	Antagonists	References
Leptin	0.1-2.5 mg/kg (systemic) 0.5-10 μg (i.c.v.) 10 mg (humans)	LEP (116-130)	Leptin tA recombinant. Soluble form of the OB-R Leptin antibody	228, 229, 241, 255-259
Insulin	0.5-8 mU (i.c.v.)	Peptides S519 and S371	Peptide RB537	229, 260
Adiponectin	50 mg/kg	Recombinant adiponectin		261-262
PYY ₃₋₃₆	100 μg/kg (systemic) 0.1-10 μg (central)	WO 0247712	JNJ-5207787 BIIE 0246	263-265
PP	0.1-10 μg (central)	GR 231118 (1229U91), hPancreatic Polypeptide, [cPP ¹⁻⁷ ,NPY ¹⁹⁻²³ ,Ala ³¹ ,Aib ³² , GIn ³⁴]-hPancreatic Polypeptide		266-268
GLP-1	10 μg (i.c.v.) 0.9 pmol/kg/min (humans)	Exendin-4	Exendin-3 (9-39)	129-130
Amylin	1-3 pmol/kg (systemic)	Pramlintide	AC 187	136, 138, 271
OXM	1-3 nmol (i.c.v.) 3-100 nmol/kg (systemic)	Exendin-4	Exendin-3 (9-39)	129-130
ССК	1 μg (i.c.v.) 10 nmol/kg	CCK ₁ : A-71623 AR-R 15849 GW5823 CCK ₂ : Gastrin A-63387	CCK ₁ : Devazepide , SR29897 CCK ₂ : LY 225910 , YM 022 , CI 988 , LY 288513 , PD 135158	144, 145, 272- 280
Bombesin, and related peptides	GRP: 32 nmol/kg Bombesin (4 mg/kg) 4 mg/kg/min (humans)	BIM 187, GRP (1-27) Neuromedin B Neuromedin C Alytesin Litorin (Amphibian)	PD 176252, PD 168368, BIM 23042, BIM 23127 ICI 216,140 [D-Phe ¹² , Leu ¹⁴]Bombesin [D-Phe ¹²]Bombesin	151, 152, 281- 284

LEP (116-130) (mouse), Synthetic Leptin Peptide Fragment

LEP (116-130) (mouse) Cat. No. 2985

Ser-Cys-Ser-Leu-Pro-Gln-Thr-Ser-Gly-Leu-Gln-Lys-Pro-Glu-Ser-NH₂

LEP (116-130) is a synthetic leptin peptide fragment that restricts weight gain, reduces food intake and blood glucose levels in *ob/ob* and *db/db* mice. The peptide does not act through interaction with the long form of the leptin receptor.

Grasso et al (1997) In vivo effects of leptin-related synthetic peptides on body weight and food intake in female ob/ob mice: localization of leptin activity to domains between amino acid residues 106-140. Endocrinology **138** 1413. Grasso et al (1999) Inhibitory effects of leptin-related synthetic peptide 116-130 on food intake and body weight gain in female C57BL/6J *ob/ob* mice may not be mediated by peptide activation of the long isoform of the leptin receptor. Diabetes **48** 2204. **Rozhavskaya** et al (2000) Design of a synthetic leptin agonist: effects on energy balance, glucose homeostasis and thermoregulation. Endocrinology **141** 2501.

Moreover, in rodents, microinjections of leptin into the ventromedial hypothalamus (VMH)²¹ and the arcuate nucleus (ARC)²² can potently decrease food intake, suggesting that leptin's actions are mediated chiefly by the hypothalamus. Activation of these brain regions by leptin is partly attributable to its actions on ARC neurons that lie outside the blood–brain barrier.²³ However active transport of leptin across the blood–brain barrier has been demonstrated.^{24,25}

Leptin responsive neurons in the ARC include those containing the orexigenic peptides neuropeptide Y (NPY) and agouti related peptide (AgRP), and those containing the anorexigenic peptides α -melanocyte-stimulating hormone (α -MSH) and cocaine and amphetamine regulated transcript (CART). The NPY/AgRP neurons are inhibited by leptin, while α -MSH/CART neurons are activated.²⁶ There are also potentially synergistic interactions between leptin and the short-term satiety signal cholecystokinin (CCK), which may involve integration at the level of primary sensory afferents.²⁷

Circulating leptin levels also vary in an adiposityindependent manner; decreasing during fasting and increasing with re-feeding. These changes have been linked to insulin and glucose regulation. For example, insulin increases leptin production and plasma levels of leptin are correlated with plasma glucose levels.²⁸⁻³⁰

It has been suggested that the influence of leptin on energy expenditure may be most prominent in terms of body weight regulation, as its effects on food intake are transient.³¹ One means by which leptin increases energy expenditure is via sympathetic activation of brown adipocytes, leading to thermogenesis in brown adipose tissue (BAT).³² The effects of leptin on thermogenesis are also seen in non-rodent species with comparatively low levels of BAT. In sheep, central administration of leptin markedly enhances postprandial thermogenesis in both diffuse adipose depots (retroperitoneal and gluteal fat) and muscle.³³

As noted above, genetic mutations resulting in leptin insufficiency or leptin receptor deficiencies support the notion that this peptide plays an important role in long-term energy homeostasis. Although several studies have reported that leptin can be an effective pharmaceutical tool for treating obesity in leptindeficient states, the administration of exogenous leptin fails to significantly reduce adiposity in most cases of human obesity. Furthermore, deficiencies in leptin production or leptin receptor expression have been linked to only a very few cases of human obesity.34 Indeed, increased adipocyte leptin content and high circulating leptin levels are common in the obese, which has lead to the idea of leptin resistance. This hypothesis explains the failure of an upregulated leptin signal to modify appetite and prevent weight gain. Leptin resistance seems to be caused in part by a reduction in its transport across the blood-brain barrier, as well as its decreased ability to initiate cellular activation within the brain.¹⁵ Leptin enters the brain through active transport, which involves a short form of the leptin receptor (ObRa) at the choroid plexus. Studies in rodents have shown that feeding animals a high-fat diet decreases ObRa levels within the hypothalamus^{24,35} and, consistent with this leptin transport is reduced in obese humans.³⁶ An additional cause may be a defect in leptin signaling related to the suppressor of cytokine signaling 3 (SOCS3) and insulin receptor substrate/phosphatidylinositol 3-kinase (IRS/PI 3-K) signaling pathways.^{37,38} Various studies have demonstrated the importance of SOCS3 in determining the degree of leptin sensitivity.³⁹⁻⁴¹ For example, a specific increase in SOCS3 expression is seen in ARC neurons of mice with diet-induced obesity and this may be a primary cause of leptin resistance.42

Insulin

Insulin is a 51 amino acid protein produced mainly by the pancreatic β cells in response to elevated blood glucose concentrations. There is also evidence of some neuronal synthesis, however the majority of insulin in the brain is of peripheral origin.^{43,44} As with leptin, circulating levels of insulin are proportional to adiposity.45 Insulin interacts with specific receptors in the hypothalamus⁴⁶ and, along with leptin, regulates the synthesis and release of NPY.47 The expression of NPY in ARC neurons is decreased after systemic or central administration of insulin and leptin, whereas these NPY neurons are activated when the levels of these hormones fall during undernutrition.⁴⁸ Intraventricular or intrahypothalamic administration of insulin inhibits food intake and produces a sustained loss of body weight in both rodents⁴⁹ and

PQ 401, IGF-IR Inhibitor

PQ 401 Cat. No. 2768

PQ 401 is an insulin-like growth factor receptor (IGF-IR) inhibitor. The compound suppresses IGF-stimulated IGF-IR autophosphorylation with an IC₅₀ value of 12 μ M and it inhibits growth of MCF-7 breast cancer cells *in vitro* and *in vivo*.

Anderson et al (2006) Parallel synthesis of diarylureas and their evaluation as inhibitors of insulin-like growth factor receptor. J.Comb.Chem. 8 784. Gable et al (2006) Diarylureas are small-molecule inhibitors of insulin-like growth factor I receptor signaling and breast cancer cell growth. Mol.Cancer 5 1079. Sivakumar et al (2009) Autocrine loop for IGF-I receptor signaling in SLUGmediated epithelial-mesenchymal transition. 34 329.

primates.⁵⁰ In contrast, injection of insulin antibodies into the hypothalamus of rats increases food intake and results in body weight gain.⁵¹ Additionally, mice with a genetic deletion of neuronal insulin receptors are hyperphagic and obese.⁵² Insulin secretion is stimulated acutely in response to meals. Obesity, in the vast majority of obese humans, is associated with both hyperinsulinemia and hyperleptinemia, indicative of insulin, as well as leptin resistance.

Adiponectin

Adiponectin (also known as Acrp30 and apM1) is a 244 amino acid polypeptide that modulates a number of metabolic processes, including glucose regulation and fatty acid catabolism. It is exclusively produced by mature adipocytes⁵³ and levels are reduced in obesity, particularly visceral obesity.54 This is thought to contribute, via a peripheral mechanism, to diminished insulin sensitivity and the development of insulin resistance.55 Although adiponectin does not appear to cross the blood-brain barrier,56,57 the ARC58 and the area postrema⁵⁹ respond to adiponectin, indicating that these cells may be involved in relaying the signal to other brain regions. In the hypothalamus, actions of adiponectin are mediated via two adiponectin receptors (AdipoR1 and AdipoR2), which have opposing effects.⁶⁰ Deletion of the AdipoR1 gene results in obesity caused by reduced energy expenditure, whereas deletion of the AdipoR2 gene results in increased energy expenditure and a lean phenotype.⁶¹ Central administration of adiponectin reduces body weight,62 primarily a result of an increase in energy expenditure. In wild-type and ob/ob mice, adiponectin increases uncoupling protein 1 (UCP1, thermogenin) mRNA levels in BAT and promotes thermogenesis, without altering food intake.62 To date the effects of adiponectin on food intake have been inconclusive, with studies showing either a lack of effect,62 a reduction,63 or an increase.58 Clearly, adiponectin is an important peripheral hormone

pertinent to determining levels of insulin sensitivity, but further work is required to resolve actions of this hormone within the brain.

Ghrelin

Ghrelin, a 28 amino acid acylated peptide, is the endogenous ligand for the growth hormone secretagog receptor (GHS-R) and was the first circulating hormone shown to stimulate eating and weight gain. It is primarily secreted by specialized enterochromaffin cells located in the mucosa of the gastric fundus,⁶⁴ although several studies have demonstrated that it is also synthesized in the CNS, notably within hypothalamic regions.65,66 In lean humans, ghrelin levels rise during the intervals between meals (or during fasting) and peak before meal onset, leading to the notion that ghrelin might act as a meal initiation signal. Ghrelin levels fall in the hour after a meal or glucose load, with the extent of postprandial suppression being proportional to caloric intake. Significantly, ghrelin infusion has been reported to increase food intake in healthy volunteers⁶⁷ and in patients with anorexia due to cancer⁶⁸ and chronic renal failure.⁶⁹ Importantly, these effects occur at doses that are within the normal physiological range for circulating endogenous ghrelin. In humans, circulating ghrelin levels are decreased in acute states of positive energy balance and in obesity, and are elevated during sustained fasting with weight loss and in anorexia nervosa.^{70,71} In addition to having reduced ghrelin levels, obese individuals do not exhibit the postprandial decline in plasma concentrations observed in the lean.72 It has been suggested that this lack of ghrelin suppression may lead to increased food consumption and contribute to the pathophysiology of obesity. Of course, ghrelin levels in obesity might already be reduced to a level where no further fall is detectable. It could be that the reduced ghrelin levels in the obese may reflect a consequence of overconsumption, rather than a cause.

Ghrelin (human), Endogenous Ghrelin Receptor Agonist

Ghrelin (human) Cat. No. 1463 ⁿOctanoyl Gly-Ser-Ser-Phe-Leu-Ser-Pro-Glu-His-Gln-Arg-Val-Gln-Gln-Arg-Lys-Glu-Ser-Lys-Lys-Pro-Pro-Ala-Lys-Leu-Gln-Pro-Arg

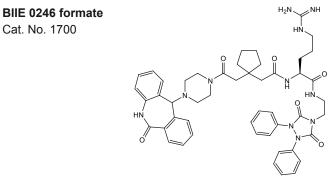
Ghrelin is the endogenous agonist peptide for the ghrelin (GHS) receptor and is produced mainly by the stomach. The compound stimulates release of growth hormone from the pituitary gland *in vitro* and *in vivo*, and regulates feeding, growth and energy production.

Kojima *et al* (1999) Ghrelin is growth-hormone-releasing acylated peptide from stomach. Nature **402** 656. **Tolle** *et al* (2001) In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology **73** 54. **Inui** (2001) Ghrelin: an orexigenic and somatotrophic signal from the stomach. Nature Rev.Neurosci. **2** 551.

The metabolic effects of ghrelin are opposite to those of leptin and it has been proposed that these two peptides exert a counter-regulatory action on each other.⁷³ In addition to possibly playing a role in the initiation of eating, peripheral and central administration of ghrelin^{74,75} enhances carbohydrate metabolism and reduces fat utilization and energy expenditure.⁷⁴ Central ghrelin appears to partition nutrients toward fat storage by favoring an increase in glucose and triglyceride uptake, increasing lipogenesis and inhibiting lipid oxidation in white adipocytes. This may also suggest an alternative role for the pre-meal surge in ghrelin. Rather than being a signal of meal initiation, this increase may trigger processes in the CNS that prepare the body to receive and appropriately process incoming nutrients. One mediator of the orexigenic effect of ghrelin is AMPactivated protein kinase (AMPK),76,77 a key enzyme regulator of energy homeostasis both centrally and peripherally.^{78,79} In addition, ghrelin seems to achieve its orexigenic action through stimulation of hypothalamic circuits, in part by activating the arcuate NPY/AgRP pathways and opposing anorexigenic signals.⁸⁰⁻⁸² Ghrelin-induced eating may also be mediated via the endogenous cannabinoid system, since feeding induced by intraparaventricular nuclear ghrelin is reversed by the CB₁ receptor antagonist rimonabant.83

Despite the great interest in ghrelin and its putative role in stimulating eating, there are some inconsistencies in the data indicating that caution should be exercised. For example, it should be noted that ghrelin has only modest affects on food intake in animal models compared to other endogenous orexigens. Furthermore, ghrelin-deficient mice (ghrl-/-) exhibit normal spontaneous food intake patterns and growth rates, normal levels of hypothalamic orexigenic and anorexigenic neuropeptides and a normal hyperphagic response to fasting. Such findings suggest that ghrelin is not imperative in the regulation of appetite.⁸⁴ Additionally, differences apparently exist between people in the change of subjective desire to eat resulting from food restriction and ghrelin levels. Caloric restriction over 4 days in healthy men, sufficient to significantly reduce lean body mass and increase appetite, was not accompanied by changes to serum ghrelin levels.85 Stronger evidence may be required to fully support the proposed role of ghrelin as a 'hunger signal' in normal feeding.

Various approaches have been used to block ghrelin activity. GHS-R1a antagonists reduce food intake acutely in lean, diet-induced obese and *ob/ob* mice and repeated administration to *ob/ob* mice results in reduced weight gain.⁸⁶ A similar acute effect has been demonstrated in rats.⁸⁷ However, it seems that not all GHS-R1a antagonists have similar effects on appetite. For instance, BIM-28163, a ghrelin analog with full competitive GHS-R1a antagonist properties, prevents ghrelin-stimulated growth hormone release in rats but stimulates food intake and weight gain.^{88,89} This suggests the existence of a novel receptor regulating the orexigenic actions of ghrelin.


Another approach to blocking the orexigenic effects of ghrelin is the use of RNA-Spiegelmers (stable oligonucleotides with specific target binding properties). NOX-B11, a high affinity Spiegelmer specific for octanoylated ghrelin, reduces ghrelin-induced food intake⁹⁰ and produces weight loss in mice with diet-induced obesity.⁹¹

Another approach under investigation is the use of anti-ghrelin 'vaccines', which cause weight loss in rats⁹² and pigs⁹³. A recent phase I/II clinical trial showed no evidence of an effect on weight in obese humans, despite producing a robust antibody response.⁹⁴

Peptide YY₃₋₃₆

Peptide YY₃₋₃₆ (PYY₃₋₃₆) is produced by the endocrine L cells of the small and large bowel in response to the presence of food. Levels of the peptide are reported to increase postprandially and to decrease food intake.⁹⁵ Recently it has been shown that PYY₃₋₃₆ is also produced by neurons of the paraventricular nucleus (PVN), ARC and supraoptic nuclei of the human hypothalamus.⁹⁶ Based on structural and evolutionary criteria, PYY₃₋₃₆ is closely related to NPY and pancreatic polypeptide (PP),⁹⁷ which all act on the NPY receptor family.⁹⁸ In common with leptin, PYY₃₋₃₆ has been shown to cross the blood brain barrier and act on the Y₂

BIIE 0246, Potent, Selective Non-Peptide NPY Y₂ Antagonist

BIIE 0246 is a potent, selective and competitive non-peptide neuropeptide Y Y_2 antagonist (IC₅₀ = 15 nM). The compound displays > 650-fold selectivity over Y_1 , Y_4 and Y_5 receptors and is active *in vivo*.

Doods *et al* (1999) BIIE0246: a selective and high affinity neuropeptide Y Y₂ receptor antagonist. Eur.J.Pharmacol. **384** R3. **Dumont** *et al* (2000) BIIE0246, a potent and highly selective non-peptide neuropeptide Y Y₂ receptor antagonist. Br.J.Pharmacol. **129** 1075. **Malmstrom** (2001) Vascular pharmacology of BIIE0246, the first selective non-peptide neuropeptide Y Y₂ receptor antagonist, *in vivo*. Br.J.Pharmacol. **133** 1073.

receptor, a presynaptic inhibitory autoreceptor on NPY neurons.^{95,99} Activation of Y₂ causes a decrease in NPY release and an increase in α-MSH release.95 In addition, PYY₃₋₃₆-deficient mice show alterations in their energy metabolism, supporting a role for PYY₃₋₃₆ in the regulation of energy homeostasis.^{100,101} Obese humans have low levels of PYY₃₋₃₆, suggesting that a deficiency may contribute to the pathogenesis of obesity. Infusion of $\mathsf{PYY}_{\scriptscriptstyle 3\text{-}36}$ significantly decreases cumulative 24-hour energy intake in both obese and lean subjects. In contrast to the negligible effect on appetite caused by the daily fluctuations in circulating leptin, PYY_{3-36} has been shown to inhibit food intake in rodents and humans at physiological concentrations. Unlike leptin, there is no evidence of resistance to PYY₃₋₃₆ in obese subjects.¹⁰² Although these results are potentially of great importance, it should be noted that central administration of PYY₃₋₃₆ can stimulate eating.¹⁰³ The absence of obesity-associated resistance to the anorectic properties of PYY₃₋₃₆ makes it an attractive target for treatment. At the moment, intranasal PYY₃₋₃₆ is undergoing long term phase II studies. However, its use seems to be hindered by adverse side effects such as nausea and vomiting.¹⁰⁴

Pancreatic Polypeptide

Pancreatic polypeptide (PP) is a 36 amino acid peptide derived from pre-proglucagon. It is released by the pancreatic islet cells in response to food intake and in proportion to the calories ingested. Low levels of PP have been found in obese humans and genetically obese mice¹⁰⁵ and high levels occur in patients with anorexia nervosa.¹⁰⁶ Furthermore, peripheral administration of PP has been shown to reduce food intake in lean and obese rodents and *ob/ob* mice are less sensitive to the peptide's actions.¹⁰⁷ In humans, PP infusion can produce marked, apparently long-lasting intake suppression,¹⁰⁸ leading to the proposal

[cPP¹⁻⁷,NPY¹⁹⁻²³,Ala³¹,Aib³²,Gln³⁴]hPancreatic Polypeptide, Potent, Selective NPY Y₅ Agonist

[cPP¹⁻⁷,NPY¹⁹⁻²³,Ala³¹,Aib³²,Gln³⁴]-hPancreatic Polypeptide Cat. No. 1365

 $\label{eq:Giv-Pro-Ser-Gin-Pro-Thr-Tyr-Pro-Giy-Asp-Asn-Ala-Thr-Pro-Giu-Gin-Met-Ala-Arg-Tyr-Tyr-Ser-Ala-Leu-Arg-Arg-Tyr-Ile-Asn-Met-Ala-Aib-Arg-Gin-Arg-Tyr-NH_2$

[cPP¹⁻⁷,NPY¹⁹⁻²³,Ala³¹,Aib³²,Gln³⁴]-hPancreatic Polypeptide is a potent, selective peptide agonist for the NPY Y₅ receptor (IC₅₀ values for inhibition of NPY binding to human Y₅, Y₄, Y₂, and Y₁ receptors are 0.24, 51, > 500 and 530 nM respectively, K₁ at Y₅ = 0.1-0.15 nM). The compound stimulates food intake *in vivo*.

Cabrele *et al* (2000) The first selective agonist for the neuropeptide YY_5 receptor increases food intake in rats. J.Biol.Chem. **275** 36043. **Dumont** *et al* (2005) BODIPY[®]-conjugated neuropeptide Y ligands: new fluorescent tools to tag Y1, Y2, Y4 and Y5 receptor subtypes. Br.J.Pharmacol. **146** 1069.

that PP may act as a circulating satiety signal. The mechanism by which PP reduces food intake has not yet been established, although actions on gastric emptying, or regulation of NPY, orexin and ghrelin have been proposed.^{109,110} It has been shown that PP signals via the NPY Y_4 and Y_5 receptors and therefore could directly activate neurons in the hypothalamus.¹¹¹ The suppressive effects of PP are relatively modest, and have not been consistently replicated, even at high doses. The potential role of PP is further complicated by the finding that central administration of the peptide can induce moderate hyperphagia, potentially via actions on Y₅ receptors. Although there is some evidence for PP production within the CNS, circulating PP can enter the brain, so there is clearly a need for the opposing actions of centrally and peripherally administered exogenous PP to be investigated further. Knowledge of the actions of PP has resulted in the development of two synthetic peptide hormones; TM30339, a selective Y₄ receptor agonist, which is likely to be the subject of phase I/II studies in the near future, and TM30338, a dual Y_2 - Y_4 receptor agonist that causes an acute reduction in food intake.104

Glucagon-like Peptide 1

Like PP, glucagon-like peptide 1 (GLP-1) is a derivative of pre-proglucagon, and there are two circulating forms identified in mammals: the predominant GLP-1 (7-36) amide, and GLP-1 (7-37). GLP-1 is co-secreted with $\mathsf{PYY}_{\scriptscriptstyle 3\text{-}36}$ in response to nutrients in the gut, especially carbohydrates.¹¹² Like other gastrointestinal peptides GLP-1 is also produced in the CNS,¹¹³ particularly the nucleus of the solitary tract (NTS) and hypothalamus, with high levels of GLP-1 receptor mRNA present in ARC and PVN. A physiological role of GLP-1 as an anorectic or satiety factor is suggested due to the observations that intracerebroventricular (i.c.v.) injection suppresses food intake and body weight gain in normal and obese rats. Additionally, daily administration of exendin-(9-39), a GLP-1 receptor antagonist, augments food intake and body weight.¹¹⁴ The anorectic effects of GLP-1 may be mediated through NPY signaling since GLP-1 inhibits, and exendin-3 (9-39) promotes, NPY-induced feeding.¹¹⁵ Exendin-3 (9-39) also blocks leptin-induced inhibition of food intake, and GLP-1 neurons in the NTS co-express leptin receptors, thereby suggesting that the GLP-1 pathway may be one of the mediators of the anorectic effects of leptin¹. Intraventricular GLP-1 powerfully inhibits feeding in rodents, and this response is blocked by the concurrent administration of exendin-3 (9 39). In addition, GLP-1 functions as an incretin, enhancing insulin secretion and suppressing glucagon secretion after a meal.^{116,117} In humans, infusion of GLP-1 at the start of a meal suppresses feelings of hunger and increases satiety scores, without affecting

Exendin-4, Potent GLP-1 Receptor Agonist

Exendin-4 Cat. No. 1933 His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-Arg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH₂

Exendin-4 is a high affinity glucagon-like peptide 1 (GLP-1) receptor agonist (K_d = 136 pM) that was originally isolated from *Heloderma suspectum* venom. The compound potently induces cAMP formation without stimulating amylase release in pancreatic acini. It potentiates glucose-induced insulin secretion in isolated rat islets and protects against glutamate-induced neurotoxicity.

Eng *et al* (1992) Isolation and characterization of exendin-4, an exendin-3 analogue, from *Heloderma suspectum* venom. J.Biol.Chem. **267** 7402. **Goke** *et al* (1993) Exendin-4 is a high potency agonist and truncated exendin-(9-39)-amide an antagonist at the glucagon-like peptide 1-(7-36)-amide receptor of insulin-secreting β-cells. J.Biol.Chem. **268** 19650. **Thorens** *et al* (1993) Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes **42** 1678. **Perry** *et al* (2002) Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J.Pharmacol.Exp. Ther. **302** 881.

palatability.¹¹⁸ It also causes a small dose-dependent inhibition in food intake in both lean and overweight subjects.¹¹⁹ Prandial injections of GLP-1 given to obese but otherwise healthy volunteers for five days resulted in a mean body weight loss of 0.55 kg.¹²⁰ The combination of enhanced insulin release with reduction in food intake makes GLP-1 an attractive potential treatment for patients with type II diabetes.

It is important to note some discrepancies that could affect interpretations of the role of GLP-1. For instance, GLP-1 receptor knockout mice do not exhibit any abnormalities in feeding behavior and have no tendency to become obese.¹²¹ Additionally, GLP-1 induces conditioned taste aversion suggesting that the peptide may suppress feeding by inducing a sensation of sickness.122 Human studies with exendin-4 (exenatide), a naturally-occurring peptide with sequence homology to GLP-1, have shown it produces significant reductions in body weight.¹²³ The therapeutic potential of extendin-4 is limited by its side effects, which include nausea and vomiting.¹²⁴ Liraglutide, another analog of GLP-1, improves glycemic control in association with weight loss. However, similarly to exendin-4, it induces nausea.¹²⁵ CJC-1134, a newly developed GLP-1 analog, seems to have better tolerability.104

Oxyntomodulin

Oxyntomodulin (OXM) is a 37 amino acid peptide which is derived from pre-proglucagon processing in the L cells of the small intestine and in the CNS.¹²⁶ OXM is released in response to food ingestion and in proportion to meal caloric content.¹²⁷ Levels are markedly elevated in tropical malabsorption and after jejuno-ileal bypass surgery for morbid obesity; conditions that are both associated with

anorexia and weight loss.¹²⁸ Despite the high OXMlike immunoreactivity in the CNS, notably in the hypothalamus, little is known about its physiological role. OXM has been shown to cause a robust and sustained inhibition of food intake following systemic and central administration in rats and humans.¹²⁸⁻¹³² Furthermore, chronic i.c.v. administration causes a marked reduction in body weight gain and adiposity,¹³³ suggesting OXM as a potential regulator of appetite and body weight. The anorectic effects of OXM are abolished in GLP-1R(-/-) mice and can be blocked by exendin-(9-39). This indicates that OXM actions are dependent, at least in part, on GLP-1R, suggesting complex interactions of different pre-proglucagon-derived peptides acting at a common target.¹³¹ In healthy humans, systemic administration of OXM significantly reduces hunger and food intake.128 The mechanism of action of OXM remains unclear. It has been suggested that the circulating peptide may access the brain via the ARC and exert its anorectic actions through indirect activation of pro-opiomelanocortin (POMC) neurons in the hypothalamus and through inhibition of fasting ghrelin levels.¹²⁸ Therefore, OXM could offer a novel route for the development of therapeutic agents in the treatment of obesity.

Amylin

An additional pancreatic peptide that reduces food intake is amylin. Amylin is a 37 amino acid peptide belonging to the family of calcitonin gene-related peptides (CGRP) and is a physiological product of pancreatic β cells. It is co-secreted with insulin in a molar ratio that usually remains constant but which may be altered by disease states, including obesity and diabetes.¹⁰⁴ Amylin crosses the bloodbrain barrier via specific transport systems¹³⁴ and suppresses feeding in food-deprived and freefeeding rodents. It is proposed to act on receptors in the area postrema (AP),¹³⁵ although the highest

AC 187, Potent and Selective Amylin Receptor Antagonist

AC 187

Cat. No. 3419

Ac-Val-Leu-Gly-Lys-Leu-Ser-Gln-Glu-Leu-His-Lys-Leu-Gln-Thr-Tyr-Pro-Arg-Thr-Asn-Thr-Gly-Ser-Asn-Thr-Tyr-NH₂

AC 187 is an orally active, potent amylin receptor antagonist (IC_{50} = 0.48 nM) that displays 38-fold and 400-fold selectivity over calcitonin and CGRP receptors respectively. The compound increases glucagon secretion, accelerates gastric emptying, alters plasma glucose levels and increases food intake *in vivo*.

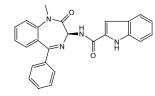
Reidelberger *et al* (2004) Amylin receptor blockade stimulates food intake in rats. Am.J.Physiol.Inter.Comp.Physiol. **287** R568. **Jhamandas and MacTavish** (2004) Antagonist of the amylin receptor blocks β -amyloid toxicity in rat cholinergic basal forebrain neurons. J.Neurosci. **24** 5579. **Gedulin** *et al* (2006) Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul.Pept. **137** 121.

Peptide	Dose and site of administration	Agonists	Antagonists	References
Ghrelin	30-300 pmol (intrahypothalamic) 1-10 nmol (systemic)	RC-1291 MK-0677 Tabimorelin L-692,585	[D-Arg¹,D-Phe⁵,D-Trp ^{7,9} ,Leu¹¹], Substance P* [D-Lys³]-GHRP-6	254, 285- 288
NPY	0.5-5 μg (central) 100 μg (humans)	Y ₁ : [Leu³¹,Pro³⁴]-NPY [Arg ⁶ ,Pro ³⁴]-pNPY [D-Trp³⁴]-NPY [Phe ⁷ ,Pro ³⁴]-pNPY Y ₂ : PYY ₃₋₃₆ Y ₅ : [cPP¹⁻⁷,NPY¹⁹⁻²³,Ala³¹ Aib³²,Gln³⁴]-hPP [Leu ³¹ ,Pro ³⁴]-PYY [hPP ¹⁻¹⁷ , Ala ³¹ , Aib ³²]-NPY BWX 46	D-NPY (27-36) Y ₁ : BIBO 3304, GR 231118 (1229U91) BVD 10 PD 160170 BIBO 3304 BIBP 3226 Y ₂ : BIIE 0246 Y ₅ : L-152,804, CGP 71683 NTNCB	265, 289- 306
AgRP	1 nmol (i.c.v.)	<mark>α-MSH</mark> NDP-MSH (Nle⁴,D-Phe ⁷ -α-MSH) MC₃: γ₁-MSH MC₄: MT-II, THIQ	HS 014, HS 024	213, 307, 308
МСН	0.5 μg (PVN)	[Ala¹⁷]-MCH S36057 R2P	T-226296 , SNAP7941, ATC 0065, ATC 0175, GW3430	177, 308- 311
Orexin	3-30 nmol	Orexin A, Orexin B OX ₂ : [Ala ¹¹ , D-Leu ¹⁵]-Orexin B	OX ₁ : SB 408124 SB 334867 SB 284422	312-313
Galanin	0.5 -2.5 nmol	Galanin (1-15) Galanin (1-30) Galanin (2-29) M617	M40, M871	314
Opioid β-endorphin [Leu]- /[Met]- enkephalin and analogues (DADL, DSLET , DALA, DTLET) Dynorphin A	1-2 nmol (VMH, PVN, NAC, VTA) 0.7 - 7.0 nmol (VMH, PVN, NAC) 0.3 pmol – 10 nmol (VMH, PVN, NAC)	Salvinorin A μ: Loperamide, Fentanyl, DAMGO, Endomorphin-1, Endomorphin-2 Sufentanil PL 017 δ: SNC 80, SNC 121, SNC 162, BW 373U86, FIT, [D-Ala ²]-Deltorphin II, DPDPE, DSLET δ ₁ : SB 205607 δ ₂ : DELT DSBULET, Naltriben κ: BAM 22P, ICI 199,441, ICI 204,448, U 69593, U-54494A, κ ₁ : U-50488 κ ₂ : GR 89696 κ ₃ : NalBzOH	Diprenorphine, Buprenorphine μ: β-FNA Cyprodime, CTOP, CTAP Naloxonazine (μ ₁) Naloxone and Naltrexone (μ-preferring, general antagonists) δ: Naltrindole Naltriben, SDM25N, ICI 154, 129, ICI 174,864 δ ₁ : DALCE, BNTX δ ₂ : <i>N</i> -BenzyInaltrindole κ: <i>nor</i> -BNI	204, 315

Table 3 | Orexigenic peptides. Commonly used doses, agonists and antagonists.

(Bold text denotes compounds available from Tocris)

*inverse agonist


density of amylin binding sites (modified calcitonin receptors, AMY1-3) occur in the hypothalamus. In concordance, amylin-deficient mice exhibit higher than normal weight gain. Intra-AP treatment with the amylin antagonist AC 187 blocks the anorectic actions of peripherally administered amylin.¹³⁶ Importantly, AC 187 increases food intake when administered alone, either centrally or peripherally, by increasing meal size and meal frequency.¹³⁷ Several clinical trials have demonstrated that in diabetic patients, the amylin analog pramlintide causes a modest reduction in body weight.¹³⁸ Pramlintide has recently been granted Food and Drug Administration approval.¹³⁹

Cholecystokinin

Cholecystokinin (CCK) is a linear peptide that is synthesized as a pre-prohormone and then cleaved to generate a family of peptides. The predominant forms in plasma are CCK-8, CCK-33 and CCK-39. CCK is produced by endocrine I cells in the duodenum and jejunum and was the first gut hormone shown to dose-dependently decrease food intake in several species, including humans.¹⁴⁰⁻¹⁴² It has been proposed to act as a satiety signal via CCK, receptor activation on vagal afferents.¹⁴⁰ Otsuka Long Evans Tokushima Fatty (OLEFT) rats lack CCK₁ receptors and are insensitive to the anorexigenic action of CCK. These animals are hyperphagic and obese, and exhibit deficits in hypothalamic NPY gene expression.143 CCK₁ receptor antagonists increase food intake in several species,¹⁴⁴ whereas CCK₁ agonists have the opposite effect.¹⁴⁵ Peripheral CCK has a rapid but relatively short-lived effect on feeding, which is consistent with a role in mediating meal termination and satiety.¹⁴⁶ In rats, CCK administration fails to result in weight reduction since reduced meal size is largely compensated for by an increase in meal

Devazepide, Selective, Orally Active CCK₁ Receptor Antagonist

Devazepide Cat. No. 2304

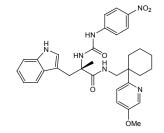
Devazepide is a potent, orally active CCK₁ receptor antagonist that displays appetite-stimulant effects. The compound blocks the anorectic response to CCK-8 and increases food intake in rats following systemic and i.c.v administration.

Ebenezer (2002) Effects of intracerebroventricular administration of the CCK1 receptor antagonist devazepide on food intake in rats. Eur.J.Pharmacol. 441 79. Reidelberger *et al* (2003) Effects of peripheral CCK receptor blockade on food intake in rats. Am.J.Physiol.Reg.Integr.Comp.Physiol. 285 R429. Ritter (2004) Increased food intake and CCK receptor antagonists: beyond abdominal vagal afferents. Am.J.Physiol.Reg.Integr.Comp.Physiol. 286 R991.

frequency.¹⁴⁷ In humans, CCK-33 infusion reduces hunger ratings and increases feelings of fullness, while opposite effects have been observed following infusion of the CCK₁ antagonist, loxiglumide.^{148,149} Conversely, there is evidence that CCK may play a role in longer-term energy regulation by synergizing with the actions of leptin. Central leptin administration potentiates the feeding inhibition of peripheral CCK, and CCK/leptin in combination results in greater weight loss over 24 hours than leptin alone. This synergy may occur by CCK activating brainstem neurons that project to the hypothalamus combined with the direct hypothalamic actions of leptin.²⁷

Bombesin and Bombesin Related Peptides

Bombesin is a 14 amino acid amphibian peptide, with three mammalian analogs: gastrin-releasing peptide (GRP), neuromedin B (NMB) and neuromedin C (NMC). These peptides exert their effects through the GRP-preferring bombesin receptor (BB2, GRP-R), NMB-preferring bombesin receptor (BB₁, NMB-R), or the bombesin receptor subtype-3 (bb₃, BRS 3). Feeding suppression by bombesin/bombesin-like peptides has been reported in a variety of species including humans.^{150,151} Peripheral and/or central administration of bombesin/bombesin-like peptides reduces meal size in a dose-dependent manner in rats¹⁵⁰ and other species.¹⁵² In humans, infusions of GRP and bombesin reduce food intake by enhancing satiety, although effective doses of bombesin may reduce food palatability and induce nausea.151,153 Specific receptor antagonists can attenuate the anorectic actions of exogenously administered bombesin-like peptides, and the blockade of bombesin receptors within the CNS can induce a significant elevation in food intake. Although in some cases antagonists for bombesin-like peptide receptors promote food ingestion, the contribution of endogenous bombesin-like peptides on the normal regulation of food intake is still unknown.¹⁵² Studies using knockout mice may provide new avenues for such research. Deficiencies in BB₂ and/or bb₃ do not affect feeding, although the hypophagic response to low-dose bombesin is suppressed in BB₂-deficient mice.¹⁵⁴ Although bombesin-like peptides have very low affinity for the bb₃ receptor, bb₃-deficient mice exhibit increased food consumption and age-related, mild obesity.155 These developments are associated with an enhanced hyperphagic response to the orexigen melanin-concentrating hormone (MCH) and levels of hypothalamic MCH receptor and prepro-MCH mRNA are elevated.¹⁵⁶ Further studies with bombesin/bombesin-like peptides using both traditional pharmacological, as well as gene-targeting strategies, may well contribute to the development of new therapeutics for the treatment of obesity.


Orexigenic Hypothalamic Neuropeptides

Neuropeptide Y

Neuropeptide Y (NPY), a 36 amino acid peptide, is one of the most abundant neuropeptides in the peripherv and the CNS.157 Research has centred on the ARC-PVN axis, revealing that NPY levels in the PVN of the hypothalamus increase rapidly before meal times and remain elevated as long as food is withheld. Levels are also entrained by circadian pacemakers in the suprachiasmatic nucleus, suggesting that NPY plays a role in the central, episodic control of meal initiation. NPY is a particularly potent stimulator of feeding behavior in animal models and acts through activation of Y1 and Y5 receptors.99 A robust and rapid feeding response is induced by i.c.v. and intrahypothalamic NPY injections,¹⁵⁸ while NPY antagonists or anti-serum decrease food intake.1 As well as during fasting, NPY processing is upregulated in genetic models of obesity in which leptin signaling is dysfunctional (including ob/ob and fa/fa). NPY is downregulated by leptin in normal animals.159 NPY neurons originating in the ARC co-express orexigens. These are released within the PVN and act synergistically with NPY to stimulate feeding.¹⁶⁰ NPY also acts to restrain the activity of anorexigenic melanocortin neurons, while itself being regulated by leptin. Although the actions of NPY, and the number of its interactions with other feeding-related systems, have generated great interest, there are some remaining questions. Contrary to expectations, NPY knockout mice do not show a lean phenotype. Furthermore, selective knockout of NPY Y_1 or Y_5

PD 176252, NMB (BB₁) and GRP (BB₂) Receptor Antagonist

PD 176252 Cat. No. 2602

PD 176252 is a non-peptide neuromedin B receptor (BB₁) and gastrin-releasing peptide receptor (BB₂) antagonist (K_i values are 0.17 and 1.0 nM for BB₁ and BB₂ respectively). The compound inhibits proliferation of rat C6 glioma cells (IC₅₀ = 2 μ M) and inhibits NCI-H1299 xenograft proliferation in nude mice (IC₅₀ = 5 μ M).

Ashwood et al (1998) PD 176252 - the first high affinity non-peptide gastrinreleasing peptide (BB₂) receptor antagonist. Bioorg.Med.Chem.Lett. **8** 2589. **Moody** et al (2000) Nonpeptide neuromedin B receptor antagonists inhibit the proliferation of C6 cells. Eur.J.Pharmacol. **409** 133. **Moody** et al (2003) Nonpeptide gastrin releasing peptide receptor antagonists inhibit the proliferation of lung cancer cells. Eur.J.Pharmacol. **474** 21.

BVD 10, Highly Selective Y₁ Antagonist

BVD 10 Cat. No. 2177

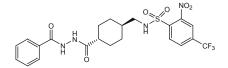
Ile-Asn-Pro-Ile-Tyr-Arg-Leu-Arg-Tyr-OMe

BVD 10 is a highly selective NPY Y_1 receptor antagonist (K₁ values are 25.7, 1420, 2403 and 7100 nM at Y_1 , Y_2 , Y_4 and Y_5 receptors respectively). The compound is devoid of agonist activity at Y_4 receptors.

Balasubramaniam *et al* (2001) Highly selective and potent neuropeptide Y (NPY) Y1 receptor antagonists based on [Pro³⁰, Tyr³², Leu³⁴]NPY(28-36)-NH₂ (BW1911U90). J.Med.Chem. *44* 1479. Jois and Balasubramaniam (2003) Conformation of neuropeptide Y receptor antagonists: structural implications in receptor selectivity. Peptides *24* 1035. Jois *et al* (2006) Modeling of neuropeptide receptors Y1, Y4, Y5, and docking studies with neuropeptide antagonist. J.Biomol.Struct.Dyn. *23* 497.

receptors leads to a fat phenotype.¹⁶¹ Additionally, NPY exerts significant effects on other physiological systems, unrelated to feeding and body weight, which may limit its use as a drug target for obesity.⁹⁹ However, the substantial NPY-induced feeding response has stimulated pharmaceutical companies to support programs focused on the NPY receptor as a potential target for antiobesity drugs.

Agouti-related Peptide


Agouti-related peptide (AgRP) is an orexigenic neuropeptide that has little intrinsic signaling activity. Instead it functions primarily by inhibiting binding of α -MSH (see below), acting as an antagonist at melanocortin (MC) receptors. AgRP is synthesized by neurons with cell bodies in the ARC and is cosecreted with NPY.162 The peptide increases food intake through antagonism of MC₃ and MC₄ receptors via blockade of the anorexigenic agonist α-MSH.¹⁶³ Alternative mechanisms of action might be mediated by orexin or opioid receptors.¹⁶⁴ Acute central administration of AgRP in rodents can increase food intake for several days. This long lasting effect of AgRP is unique when compared with the actions of all other orexigenic peptides, including NPY, MCH and orexins.^{165,166} Chronic administration of AgRP to rodents promotes sustained hyperphagia and obesity¹⁶⁷ and AgRP expression is upregulated in ob/ob leptin-deficient mice.168 Hypothalamic AgRP immunoreactivity is elevated in dietary obese rats and genetically obese ob/ob and db/db mice, and is reduced in fasting animals.^{169,170} The NPY/AgRP system is inhibited by leptin and insulin and activated by ghrelin.^{1,80} In addition, AgRP secretion appears to be chiefly triggered by any impairment of energy balance.¹⁶⁹ High circulating levels of AgRP have been documented in human obesity¹⁷¹ and a polymorphism in the human AgRP gene (c. $199G \rightarrow A$), which seems to be correlated with late-onset obesity, has been described.172

Melanin-Concentrating Hormone

Melanin-concentrating hormone (MCH) is a 19 amino acid cyclic neuropeptide present in neurons of both the central and peripheral nervous systems, notably those originating in the lateral hypothalamus (LH) and zona incerta. MCH has been described over the past few years as a candidate orexigenic factor in the mammalian brain. Intraventricular MCH administration produces a dose-dependent increase of food intake with the ability to augment ongoing feeding.¹⁶⁵ MCH mRNA levels are increased by food deprivation in leptin deficient ob/ob mice and in dietary obese rats.^{173,174} Leptin treatment restores fasting-induced MCH upregulation and prevents MCH-induced hyperphagia. Compared to NPY, the acute feeding effects of MCH are small and shortlasting. Twice-daily administration of MCH reliably increases food intake, although this effect is lost after 5 consecutive days without significant increases in body weight. The effects of MCH on feeding may be short-term due to possible down regulation of the target receptor. MCH over-expressing transgenic mice are obese and develop marked hyperphagia when maintained on a high-fat diet,¹⁷⁵ whereas MCH receptor (MCH₁) knockouts are lean, hypophagic, resistant to diet-induced obesity and have increased metabolic activity.¹⁷⁶ Additional evidence for a role in feeding comes from the ability of MCH₁ antagonists (e.g. T226296 and SNAP-7941) to block MCHinduced feeding, to reduce food intake alone and to reduce body weight with chronic administration to dietary obese rats.¹⁷⁷ Induction of apoptosis of MCHexpressing neurons in vivo produces a phenotype (MCH/ataxin-3 mice) that develops a late onset syndrome characterized by leanness, hypophagia and, in males, increased energy expenditure.178 These phenotypes are remarkably similar to those

S 25585, Potent, Selective NPY Y₅ Antagonist

S 25585 Cat. No. 3432

S 25585 is a potent neuropeptide Y Y_5 receptor antagonist (IC₅₀ values are 5.4, > 1000, > 10 000 and > 10 000 nM at Y_5 , Y_1 , Y_2 and Y_4 receptors respectively) that displays no affinity for a wide range of other receptors. The compound does not produce a conditioned taste aversion, suppress sodium appetite or cause pica in rats. It significantly inhibits NPY-induced feeding but not through blockade of Y_5 receptors.

Della-Zuana *et al* (2004) A potent and selective NPY Y₅ antagonist reduces food intake but not through blockade of the NPY Y₅ receptor. Int.J.Obes. **28** 628. **Beauverger** *et al* (2005) Functional characterization of human neuropeptide Y receptor subtype 5 specific antagonists using a luciferase reporter gene assay. Cell.Signal. **17** 489. **Kamiji and Inui** (2007) Neuropeptide Y receptor selective ligands in the treatment of obesity. **28** 664.

of mice with induced mutations of the MCH gene, suggesting that MCH itself is a key molecule that regulates energy balance.¹⁷⁹

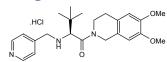
Orexin

Orexin A and B (hypocretin-1 and -2) are the endogenous ligands for the OX₁ and OX₂ G-proteincoupled receptors.^{180,181} The orexin peptides (OXA and OXB) are processed from a common 130 amino acid precursor. The C-terminal residues of both peptides share 13 amino acid identities, suggesting that they have related structures and functions.182 The cell bodies of orexin-containing neurons were originally reported to be largely confined to the LH; an area classically linked to feeding stimulation, leading to the examination of the potential for these peptides to affect food intake or body weight regulation. It is now known that orexin-producing neurons are more widely distributed, with clusters of neurons in various hypothalamic nuclei innervating the forebrain and hindbrain. Several studies have hypothesized a fundamental role of orexins in endocrine and autonomic responses to falling glucose levels. For example, hypoglycemia induces c-Fos expression in orexin neurons and increases orexin mRNA expression.183,184 Hence, orexin neurons may represent one of the populations of 'glucose inhibited' neurons in the LH that respond to falling glucose levels with an increase in activity.¹⁸⁵ Also of note, orexin neurons co-express the orexigens dynorphin and galanin, and synapse on MCH neurons within the LH and NPY neurons in the ARC.¹⁸⁶

The role of orexins in appetite regulation is not well defined. However, i.c.v. injections of OXA and OXB stimulate feeding in a dose-related fashion. OXA is significantly more effective than OXB, possibly due to its activation of both OX_1 and OX_2 receptor subtypes.¹⁸⁷

SB 334867, Selective Non-Peptide OX₁ Antagonist

SB 334867 Cat. No. 1960



SB 334867 is a selective non-peptide orexin OX₁ receptor antagonist (pK_b values are 7.2 and < 5 for inhibition of intracellular Ca²⁺ release in CHO cells expressing human OX₁ and OX₂ receptors respectively). The compound blocks orexin A-induced grooming and feeding following systemic administration *in vivo*.

Haynes *et al* (2000) A selective orexin-1 receptor antagonist reduces food consumption in male and female rats. Regul.Peptides **96** 45. **Duxon** *et al* (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX,) receptors, with downstream 5-HT_{ac} receptor involvement. Psychopharmacology **153** 203. **Porter** *et al* (2001) 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg.Med.Chem.Lett. **11** 1907. **Smart** *et al* (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br.J.Pharmacol. **132** 1179.

TCS OX2 29, Potent and Selective OX₂ Antagonist

Cat. No. 3371

TCS OX2 29 is a potent orexin 2 receptor (OX₂) antagonist (IC₅₀ = 40 nM) that displays > 250 fold selectivity over OX₁ and over 50 other receptors, ion channels and transporters.

Hirose *et al* (2003) *N*-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: The first orexin-2 receptor selective non-peptidic antagonist. Bioorg.Med.Chem.Lett. **13** 4497.

Treatment with an OX₁ receptor antagonist has been shown to reduce food consumption in rats, although this effect may be related to the involvement of these peptides in sleep regulation and the possible sedative consequences of blocking orexin function.¹⁸⁸ As with NPY and MCH, fasting upregulates orexin gene expression in the hypothalamus,¹⁸⁰ although orexins are far less effective than other peptides in stimulating food intake. They are also strongly linked to the regulation of sleep-activity cycles, which may restrict the utility of orexin interventions in treating obesity.

Galanin and Galanin-like peptide

Galanin (GAL) is a 29 amino acid neuropeptide (30 in man) that is unrelated to any known family of neuropeptides. While widely distributed throughout the periphery and brain, GAL expression is particularly dense in the PVN.¹⁸⁹ Three galanin receptors (GAL₁₋₃) have been characterized in rat, mouse and human, with GAL₁ being the predominant form in the brain.¹⁸⁹ Central administration of GAL rapidly stimulates feeding in satiated rats and has a relatively short duration of action.¹⁹⁰ The PVN is the most sensitive site of action, but dose-related increases in food intake have been obtained after

administration into other hypothalamic nuclei, as well as the lateral, third and fourth ventricles. The effects of galanin were reported to be selective for more palatable foods, with some arguing for selective enhancement of fat intake, but such actions remain controversial.^{189,191} There is evidence for the expression of galanin receptors by arcuate NPY/ AgRP and POMC/CART neurons, while leptin can downregulate hypothalamic galanin gene expression and block galanin-induced hyperphagia. Whether GAL constitutes an important or exigenic signal in the daily pattern of feeding has not been clearly established. The GAL receptor antagonists C7 and M40 inhibit GAL-induced feeding, but generally fail to suppress feeding in different behavioral paradigms when administered alone.191,192 Infusion of GAL antisense oligonucleotides in the PVN inhibits feeding¹⁹³ but, unlike NPY, continuous GAL infusion is ineffective in increasing food intake and body weight gain.¹⁹⁴ Galanin knockout mice do not exhibit any marked alteration in food intake, metabolism or body weight. However, male GAL-/-NPY-/- double knockout mice are unexpectedly hyperphagic, heavier, and gain more weight than wild type mice when fed a high fat diet. These animals also have elevated serum insulin and leptin levels. Although GAL-/-NPY-/- knockouts are no more sensitive to the intake suppressing actions of exogenous leptin than wild type mice, they do display enhanced weight loss and adipose reduction in response to chronic leptin administration in the pre-obese phase.¹⁹⁵ Such findings suggest that galanin and NPY have complementary functions in the regulation of metabolic hormones that maintain energy homeostasis. Additional studies are necessary to determine whether GAL plays more than a modulatory role in the normal regulation of feeding behavior.

Galanin-like peptide (GALP) is a 60 amino acid neuropeptide which shares a partial sequence with

Peptide	Dose	Agonists	Antagonists	References
α-MSH	1 nmol i.c.v. 10 μg	NDP-MSH (Nle⁴,D-Phe ⁷ -α-MSH), MT-II, THIQ	AgRP SHU 9119 MC₄: HS 014 HS 024 MCL 0020 JKC 363	213, 307, 316
CART	0.38 nmol	-	-	219
NT	10 µg	JMV 449 JMV 94	SR 48692 SR 142948	225, 317, 318

Table 4	Anorexidenic neuropentides	Commonly used dos	ses, agonists and antagonists.
			co, agomoto ana antagomoto.

Galanin (porcine), Endogenous Galanin Receptor Agonist

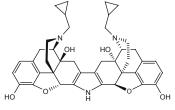
Galanin (porcine) Cat. No. 3008 Gly-Trp-Thr-Leu-Asn-Ser-Ala-Gly-Tyr-Leu-Leu-Gly-Pro-His-Ala-Ile-Asp-Asn-His-Arg-Ser-Phe-His-Asp-Lys-Tyr-Gly-Leu-Ala-NH₂

Endogenous porcine galanin receptor agonist (pK₁ values are 9.63, 9.49, 9.02, 8.98, 8.01 and 8.14 at hGAL₁, rGAL₁, hGAL₂, rGAL₂, hGAL₃ and rGAL₃ respectively). Significantly increases food intake under free access conditions and also has roles in learning and memory, anxiety and sexual behavior.

Branchek *et al* (2000) Galanin receptor subtypes. TiPS. *21* 109. **Tachibana** *et al* (2008) Central administration of galanin stimulates feeding behavior in chicks. Comp.Biochem.Physiol.A.Mol.Inter.Physiol. *151* 637. **Brewer and Robinson** (2008) Galanin stimulation of feeding is blocked by the addition of a response element. Behav.Neurosci. *122* 949.

galanin.¹⁹⁶ *In vitro* GALP is an agonist for all three galanin receptors, but displays slight preference for GAL_3 and GAL_2 over GAL_1 .^{196,197} To date, there is considerable evidence of GALP playing a role in food intake and energy metabolism.^{189,198,199}

Opioid Peptides


Opioid peptides consist of three principal families, each with distinct precursors: endorphins (POMC). enkephalins (pre-pro-enkephalin), and dynorphins (pre-pro-dynorphin). These neuropeptides act at several opioid receptors (μ -, δ - and κ -opioid receptors), for which they display varying affinity. The link between opioids and feeding was first indicated by the finding that the general opioid receptor antagonist naloxone could exert an anorectic effect in rats²⁰⁰ – an effect since replicated in many species, including humans. Subsequently, opioid receptor agonists were shown to stimulate feeding, beginning with the demonstration of hyperphagia following systemic morphine administration.201,202 With the gradual characterization of a large number of opioid peptides and receptor subtypes, the involvement of these systems in appetite has been consolidated (for a comprehensive overview, Bodnar and Klein (2004)²⁰³). Feeding is reliably induced following central administration of opiates and the endogenous opioids. Thus, β-endorphin, dynorphin and enkephalin analogs (e.g., DADL, DPDPE, DSLET, DALA) reliably increase food intake following injection into PVN, VMH, ventral tegmental area (VTA) and nucleus accumbens (NAcc). Other opioids, such as leumorphin, deltorphin, endomorphins and a-neoendorphin, have also been shown to exert orexigenic activity.^{204,205} Changes in opioid activity are also detected within the brain in response to nutritional status. For example, food deprivation increases enkephalin levels in the PVN, dynorphin levels are closely correlated with circadian feeding patterns (increasing with nocturnal intake), and hypothalamic levels of β -endorphin and dynorphin are elevated in obese Zucker rats.²⁰⁴ Additionally, agonists have

been reported to increase operant responding for ingesta. In contrast to the actions of opioid receptor agonists, antagonists reliably suppress feeding, as well as blocking the hyperphagic actions of opioids. Antagonists selective for μ -, δ - and κ receptors all have acute anorectic effects, although there are some differences between receptor subtypes. μ and κ antagonists have been the most consistently effective across different experimental conditions. In addition to acute intake suppression, antagonists will reduce intake to slow the excessive weight gain seen in dietary obesity and will suppress eating and body weight in genetically obese rodents.

There is good evidence for interactions between opioids and other feeding-related systems. For example, naloxone will block the hyperphagic actions of centrally administered $\mathsf{PYY}_{\scriptscriptstyle 3\text{-}36}\!,$ NPY, OXA and AgRP.^{204,205} The μ antagonist β –FNA blocks eating induced by the MC_{3/4} receptor antagonist SHU 9119, while β -endorphin-induced feeding is blocked by the MC_{3/4} receptor agonist MT-II.²⁰⁴ While the contribution of different opioid receptors to appetite regulation remains to be fully explored, there is general agreement that opioids are closely linked to the processes that underlie the hedonic evaluation of foods.²⁰⁶⁻²⁰⁸ Generally, opioid agonist and antagonist effects are enhanced when animals are fed palatable foods²⁰⁹ with high fat diets stimulating opioid release in brain and altering opioid receptor densities.²⁰⁴ In humans, opioid receptor blockade will reduce the palatability of food and can suppress intake in binge eaters.²¹⁰ In summary, the clear involvement of opioids in the affective aspects of appetite may provide an important focus for future research: to identify how

nor-Binaltorphimine Dihydrochloride, Selective κ-Opioid Receptor Antagonist

nor-Binaltorphimine dihydrochloride Cat. No. 0347

nor-Binaltorphimine is a selective κ -opioid receptor antagonist that reduces food intake induced by fooddeprivation and opioid receptor agonists. The antagonist reduces meal size and frequency, increases energy expenditure and improves satiation in obese Zucker rats.

Portoghese *et al* (1994) Structure-activity relationship of N17'-substituted norbinaltorphimine congeners. Role of the N17'-basic group in the interaction with a putative address subsite on the κ opioid receptor. J.Med.Chem. **37** 1495. **Feng** *et al* (1997) Nor-binaltorphimine precipitates withdrawal and excitatory amino acid release in the locus ceruleus of butorphanol- but not morphine-dependent rats. J.Pharmacol.Exp.Ther. **283** 932. **Jarosz and Metzger** (2002) The effect of opioid antagonism on food intake behavior and body weight in a biobehavioral model of obese binge eating. Biol.Res.Nurs. **3** 198.

HS 014, Selective MC₄ Receptor Antagonist

HS 014 Cat. No. 1831

Ac-Cys-Glu-His-D-2-Nal-Arg-Trp-Gly-Cys-Pro-Pro-Lys-Asp-NH₂

HS 014 is a potent and selective melanocortin MC_4 receptor antagonist (K_i values are 3.16, 54.4, 108 and 694 nM for cloned human MC_4 , MC_3 , MC_1 and MC_5 receptors respectively). The antagonist increases food intake in rats and nociception in mice following central administration. It also inhibits IL-1 β -induced Fos expression in the paraventricular hypothalamus.

Schioth *et al* (1998) Discovery of novel melanocortin₄ receptor selective MSH analogues. Br.J.Pharmacol. **124** 75. **Bellasio** *et al* (2003) Melanocortin receptor agonists and antagonists modulate nociceptive sensitivity in the mouse formalin test. Eur.J.Pharmacol. **482** 127. **Whitaker and Reyes** (2008) Central blockade of melanocortin receptors attenuates the metabolic and locomotor responses to peripheral interleukin-1β administration. Neuropharmacology **54** 509.

the putative orexigenic and anorexigenic signals discussed in other sections ultimately modulate the motivation to eat and guide behavior.

Anorexigenic Hypothalamic Neuropeptides

a-Melanocyte-stimulating hormone

 α -Melanocyte-stimulating hormone (α -MSH) is a 13 amino acid peptide derived from the precursor POMC. a-MSH reduces food intake by activating MC₃ and MC₄ receptors. A biologically unique feature of this melanocortin family is the existence of an endogenous antagonist (AgRP; see above), in addition to the endogenous agonist for the target receptors. Thus, α-MSH and AgRP/NPY neurons are believed to act as a dynamic system in vivo. Intraventricular administration of a-MSH inhibits feeding and reduces body weight. Similarly the MC₄ agonist MT-II exerts a potent anorectic action following central injection in food-deprived animals and in ob/ob mice, as well as reversing NPY-induced hyperphagia. Dietary obesity is associated with reduced MC₄ density, while fasting upregulates MC₄ receptors and downregulates POMC mRNA expression.211 Blockade of the MC₄ receptor with AgRP or synthetic antagonists (e.g. SHU 9119) increases food intake.²¹² Similarly, MC₄ knockout mice are obese, display hyperphagia, hyperinsulinemia and hyperglycemia^{212,213} and are insensitive to the anorectic actions of MT-II. MC₃ knockout mice additionally have increased fat mass and reduced lean mass, while combined deletion of both MC₃ and MC₄ produces a heavier phenotype than MC₄ deletion alone.²¹⁴ In humans, several families have been identified with mutant MC₄ related to early onset obesity and the defect is evident in 4% of extremely obese children. Furthermore, children with defects in the genes regulating POMC translation or processing are hyperphagic and obese.²¹⁵ POMC knockout mice are also obese but the condition is

reversible through administration of a stable analog of α -MSH. Overall, these findings suggest that the melanocortin system is amongst the most promising targets for future research.

CART

In 1995, Douglass et al²¹⁶ found that a particular mRNA was upregulated by acute administration of cocaine or amphetamine. They named this transcript 'cocaine- and amphetamine-regulated transcript' (CART) and the two encoded peptides are referred to as CART peptides. CART is found in many feeding-related brain regions and co-localizes with other neurotransmitters that affect appetite, such as POMC-derived peptides in the medial hypothalamic regions and MCH in the LH. In the ARC, CART neurons are directly stimulated by leptin²⁶ and CART inhibits NPY-induced feeding.217 Intraventricular and intra-accumbens administration of CART causes a rapid inhibition of feeding.²¹⁸ Conversely, CART antibodies enhance feeding, suggesting that CART exerts a tonic inhibitory control on feeding.²¹⁹ Chronic administration of CART, not only inhibits food intake, but causes weight loss in both lean and obese Zucker rats.²²⁰ This weight loss is reversed after discontinuing CART administration. Moreover, fasting causes a reduction in CART mRNA in the ARC nucleus.²²¹

These complementary effects need to be placed alongside some less straightforward findings, which suggest that CART may not be solely anorexigenic. Most notably, intra-hypothalamic injection of CART has been found to induce feeding rather than suppress it. Also problematic is the fact that intake suppression with CART is often accompanied by the induction of non-specific behavioral effects that are incompatible with the normal expression of feeding. These effects

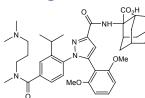
CART (62-76) (rat, human), Neuromodulating Neuropeptide Fragment

CART (62-76) (rat, human) Cat. No. 3339

Tyr-Gly-Gln-Val-Pro-Met-Cys-Asp-Ala-Gly-Glu-Gln-Cys-Ala-Val

Cart (62-76) is a cocaine- and amphetamine-regulated transcript (CART) peptide fragment that inhibits food intake. The peptide attenuates NPY-induced feeding and decreases food intake in food-restricted goldfish, and induces anxiogenic-like effects in the elevated plus-maze test. It modulates the activity of the striatal noradrenergic, and corticostrial and hypothalamic serotoninergic system, with no major effect on dopaminergic pathways in rat brain.

Volkoff and Peter (2000) Effects of CART peptides on food consumption, feeding and associated behaviors in the goldfish, *Carassius auratus*: actions on neuropeptide Y- and orexin A-induced feeding. Brain Res. *887* 125. **Vaarmann and Kask** (2001) Cocaine and amphetamine-regulated transcript peptide (CART₆₂₋₇₀)-induced changes in regional monoamine levels in rat brain. Neuropeptides *35* 292. **Colombo** *et al* (2003) Effects of ghrelin and other neuropeptides (CART, MCH, orexin A and B, and GLP-1) on release of insulin from isolated rat islets. Pancreas **27** 161.


include increased (stimulant-like) locomotor activity, unnatural body postures, movement-related tremor and altered oral motor function.²²² CART has been interwoven into the increasingly complex models of energy and body weight regulation, but it seems that there are many factors to be satisfactorily resolved before these accounts can be accepted.

Neurotensin

Neurotensin (NT) is a 13 amino acid neuropeptide, initially implicated in memory function, but subsequently ascribed a role in a wide range of psychological processes. Several observations strongly suggest a role of NT in brain anorexigenic circuitry. NT neurons and terminals are present in those hypothalamic sites that have been implicated in feeding behavior and body weight regulation.²²³ Central administration of NT decreases food intake in a variety of experimental paradigms. Neurotensin receptor 1 knockout mice (NTS1-/-) display a marginal increase in weight gain over the wild type, particularly in males, but only after several weeks. The degree of weight gain was correlated with

SR 142948, Highly Potent NT Receptor Antagonist

SR 142948 Cat. No. 2309

SR 142948 is a potent non-peptide neurotensin (NT) receptor antagonist that binds with high affinity (IC_{50} = 0.32-3.96 nM). The compound attenuates amphetamine-induced hyperactivity and is orally active *in vivo*.

Gully et al (1997) Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J.Pharmacol.Exp.Ther. 280 802. Quere et al (1998) X-ray structural characterization of SR 142948, a novel potent synthetic neurotensin receptor antagonist. Bioorg.Med.Chem.Lett. 8 653. Marie-Claire et al (2008) Effects of the selective neurotensin antagonist SR 142948A on 3,4-methylenedioxymethamphetamine-induced behaviours in mice. Neuropharmacology 54 1107. increased food intake, again with a slow onset.224 It has been proposed that NT may mediate the feeding effects of leptin, since leptin receptors are expressed by NT neurons in the hypothalamus and NT gene expression is decreased in genetically obese ob/ob mice. Central leptin administration also increases NT gene expression in the hypothalamus.²²³ Further, immunoneutralization of NT or NTS antagonists reverse leptin-induced intake suppression. However, overweight NTS1-/- show no differences from wild type in relation to leptin levels or other metabolic indices.²²⁴ Interestingly, i.c.v. NT blocks MCH-induced hyperphagia but not the feeding induced by NPY, suggesting some complex functional interactions between the anorectic NT and orexigenic peptide systems.225

Conclusion

This overview presents some of the basic evidence implicating these putative or exigenic and an or exigenic peptides in the complex regulation of appetite, body weight and energy homeostasis. The list of candidate signals will no doubt grow further, and there is a range of non-peptide transmitters that we have not discussed but which are strongly linked to these processes. We must also recognize that current emphasis on hypothalamic processes within the brain masks crucial influences of extra-hypothalamic circuitry. A fuller understanding of the behavioral and motivational aspects of eating control will require greater knowledge of those factors. It is also apparent that, in relation to several of the peptides discussed here, the evidence for a primary – or even an actual role - in feeding is sometimes to be questioned. It is essential that more thorough analyses of behavior accompanies the highly technical assays that link a peptide to a regulatory process largely on the basis of anatomical localization and whether food intake is stimulated or suppressed after non-physiological, exogenous administration. The research literature in this area is overwhelming in its scope and scale; it is hoped that the brevity of these notes will illuminate rather than conceal.

nucleus accumbens nucleus of the solitary tract paraventricular nucleus substantia nigra supraoptic nucleus thalamus

ventral raphe nucleus ventral tegmental area

hypothalamic ventromedial nucleus

154. Wada et al (1997) Biochem.Biophys.Res.Commun. 239

162. Goldstone et al (2002) J.Clin.Endocrinol.Metab. 87 927. 163. Olimann et al (1997) Science 278 135.

169. Harrold et al (1999) Biochem.Biophys.Res.Commun. 258

Fan et al (1997) Nature 385 165.
 Katsuki et al (2001) J.Clin.Endocrinol.Metab. 86 1921.
 Argyropoulos et al (2002) J.Clin.Endocrinol.Metab. 87

174. **Elliott** *et al* (2004) Brain Res.Mol.Brain Res. **128** 150. 175. **Ludwig** *et al* (2001) J.Clin.Invest. **107** 379.

Jabrand Friedman (2006) J.Neurosci. 26 389.
 Saito and Nagasaki (2008) Results Probl.Cell Differ. 46

Sakurai et al (1998) Cell 92 573.
 Date et al (1999) Proc.Natl.Acad.Sci.USA 96 748

Williams et al (2002) Physiol.Behav. 81 211. Clegg et al (2002) Endocrinology 143 2995.

Haynes et al (2000) Regul.Pept. 96 45. Gundlach (2002) Eur.J.Pharmacol. 440 255.

195. Hohmann et al (2004) Mol.Cell Biol. 24 2978.
196. Ohtaki et al (1999) J.Biol.Chem. 274 37041.

203. Bodnar and Klein (2004) Peptides 25 2205.

Bodnar (2004) Peptides 25 697. Sweet et al (2004) Peptides 25 307

206. **Cooper** (2004) Eur.J.Pharmacol. *500* 37.

Poggioli et al (1986) Peptides 7 843.
 Rossi et al (1998) Endocrinology 139 4428.

216. Douglass et al (1995) J.Neurosci. 15 2471.

210. Douglass et al (1995) 5.10e0tosci. 19 24.
 217. Lambert et al (1998) Synapse 29 293.
 218. Yang et al (2005) Neuroscience 133 841

220. Larsen et al (2000) Obes.Res. 8 590. 221. Kristensen et al (1998) Nature 393 72

223. Sahu (1998) Endocrinology 139 795.

Kyrkouli *et al* (1990) Peptides *11* 995.
 Crawley (1999) Neuropeptides *33* 369.
 Corwin *et al* (1995) Am.J.Physiol.Regul.Integr.Comp. Physiol. *269* R511.

Akabayashi et al (1994) Proc.Natl.Acad.Sci.USA 91

Lang et al (2005) Neuropeptides 39 179.
 Kageyama et al (2006) J.Neuropentides 39 379.
 Man and Lawrence (2008) Neuropharmacology 55 1.

Holtzman (1974) J.Pharmacol.Exp.Ther. 189 51.
 Bhakthavatsalam and Leibowitz (1984) Pharmacol.

207. Kirkham and Cooper (1988) Physiol.Behav. 44 491. 208. Yeomans et al (2002) Neurosci.Biobehav.Rev. 26 713.

Levine and Billiogt (2004) Physiol. Behav. 82 57.
 Drewnowski et al (1995) Am.J.Clin.Nutr. 61 1206.
 Mizuno and Mobbs (1999) Endocrinology 140 814.

Yang and Harmon (2003) Obes.Rev. 4 239.
 Krude and Grüters (2000) Trends Endocrinol.Metab. 11

219. Kuhar and Dall Vechia (1999) Trends Neurosci. 22 316.

Aja et al (2001) Am.J.Physiol.Regul.Integr.Comp.Physiol.

www.tocris.com | 17

Biochem.Behav. 24 911. Shor-Posner et al (1986) Pharmacol.Biochem.Behav. 24

184. Griffond et al (1999) Neurosci.Lett. 262 77

182. de Lecea et al (1998) Proc.Natl.Acad.Sci.USA 95 322.
 183. Cai et al (1999) Diabetes 48 2132.

185. Oomura and Yoshimatsu (1984) J.Auton.Nerv.Syst. 10

Maekawa et al (2004) Diabetes 53 570. Stanley and Leibowitz (1985) Proc.Natl.Acad.Sci.USA 82

Ohki-Hamazaki et al (1997) Nature 390 165.

158. Stanley et al (1985) Brain Res.Bull. 14 521.

164. Schwartz et al (2000) Nature 404 661.
165. Rossi et al (1997) Endocrinology 138 351

173. Qu et al (1996) Nature 380 243.

176. Shimada et al (1998) Nature 396 670.
 177. Borowsky et al (2002) Nat.Med. 8 825.

166. Edwards et al (1999) J.Endocrinol. 160 R7

Small et al (2001) Diabetes 50 248.
 Dhillo et al (2002) J.Neuroendocrinol. 14 725.

Wilding et al (1993) Endocrinology 132 1939.
 Kalra and Kalra (2004) Neuropeptides 38 201.
 Marsh et al (1998) Nat.Med. 4 718.

155

156

157.

574.

4198

159

186

187.

188

189.

193.

202

205

222

281 R1862

931

10375

194. Smith et al (1994) Peptides 15.

List of Abbreviations

AMY	amygdala	NAcc
ARC	arcuate nucleus	NTS
nor-BNI	nor-binaltorphimine	PVN
BS	brain stem	SN
DH	dorsal hippocampus	SON
DMN	hypothalamic dorsomedial nucleus	THAL
DRN	dorsal raphe nuclei	VMN
β-FNA	β-funaltrexamine	VRN
LC	locus ceruleus	VTA
LH	lateral hypothalamus	

References

- Kalra et al (1999) Endocr.Rev. 20 68
- Gale et al (2004) J.Nutr. 134 295. 3 Berthoud and Morrison (2008) Annu.Rev.Psychol. 59 55. 81.
- Power and Schulkin (2008) Appetite 50 194. Berthoud (2006) Obesity 14 197S. 4. 5.
- 6.
- Wynne et al (2005) J.Endocrinol. 184 291. Näslund and Hellström (2007) Physiol.Behav. 92 256.
- Morton *et al* (2006) Nature **443** 289. Stanley *et al* (2005) Physiol.Rev. **85** 1131. 8.
- 9
- 10. de Castro and Plunkett (2002) Neurosci.Biobehav.Rev. 26 581
- 11. Saper et al (2002) Neuron 36 199.
- Moschos *et al* (2002) Ferti Steril. **77** 433. Bado *et al* (1998) Nature **394** 790. 12
- 13. 14
- 15.
- Considine et al (1996) NEngl.J.Med. **334** 292. Henry and Clarke (2008) J.Neuroendocrinol. **20** 842. Heymsfield et al (1999) JAMA **282** 1568. Tang-Christensen et al (1999) J.Clin.Endocrinol.Metab. **84** 711. 16 17
- Halaas et al (1995) Science 269 543. Campfield et al (1995) Science 269 546 18
- 19
- 20.
- 21
- 22
- Campreid *et al* (1995) Science 299 546. Henry *et al* (1999) Endocrinology **140** 1175. Jacob *et al* (1997) Diabetes **46** 150. Satoh *et al* (1997) Neurosci.Lett. **224** 149. Faouzi *et al* (2007) Endocrinology **148** 5414. Banks *et al* (2006) Physiol.Behav. **88** 244. 23
- 24
- Kalra (2008) Peptides 29 127. Cowley *et al* (2001) Nature 411 480. 25
- 26.
- 27 28 Matson *et al* (1997) Peptides **18** 1275. Keim *et al* (1998) Am.J.Clin.Nutr. **68** 794.
- Weigle et al (1997) J.Clin.Endocrinol.Metab. 82 561. Saad et al (1998) Diabetes 47 544. Sahu (2002) J.Neuroendocrinol. 14 796. 29 30
- 31
- Rahmouni and Morgan (2007) Hypertension 49 647. Henry et al (2008) Endocrinology 149 2019. Montague et al (1997) Nature 387 903. Madiehe et al (2000) Obes.Res. 8 467. Schwartz et al (1996) Nat.Med. 2 589. Myers et al (2008) Annu. Rev.Physiol. 70 537. 32
- 33
- 34
- 35
- 36
- 37
- Münzberg and Myers (2005) Nat.Neurosci. **8** 566. Bjørbaek *et al* (1998) Mol.Cell **1** 619. Bjørbaek *et al* (1999) J.Biol.Chem. **274** 30059. 38
- 39
- 40 41
- Mori et al (2004) Nat.Med. 10 739. Münzberg et al (2004) Endocrinology 145 4880. 42
- 43
- Baura *et al* (1993) J.Clin.Invest. **92** 1824 Banks (2004) Eur.J.Pharmacol. **490** 5. 44
- Bagdade *et al* (1967) J.Clin.Invest. *46* 1549. Baskin *et al* (1988) Trends.Neurosci. *11* 107. Kalra *et al* (1991) Physiol.Behav. *50* 5. 45
- 46
- 47
- Schwartz *et al* (1992) Endocrinology **130** 3608. McGowan *et al* (1990) Behav.Neurosci. **104** 371. 48
- 49
- Woods et al (1979) Nature 282 503. Strubbe and Mein (1977) Physiol.Behav. 19 309. 50 51
- Obici et al (2002) Nat.Neurosci. 5 566. 52
- 53
- Ahima (2006) Obesity. 14 9S. Reinehr et al (2004) J.Clin.Endocrinol.Metab. 89 3790.
- Yamauchi et al (2001) Nat.Med. 7 941. Spranger et al (2006) Diabetes 55 141 55
- 56
- 57
- Pan et al (2006) Peptides 27 911. Kubota et al (2007) Cell Metab. 6 55. 58
- 59
- Fry et al (2006) J.Neurosci. 26 9695. Kos et al (2007) J.Clin.Endocrinol.Metab. 92 1129. 60
- 62
- Bjursell et al (2007) Diabetes 56 583. Qi et al (2004) Nat.Med. 10 524. Shklyaev et al (2003) Proc.Natl.Acad.Sci.USA 100 14217. 63
- Kojima et al (1999) Nature 402 656. Lu et al (2002) Neurosci.Lett. 321 157 64
- 65
- 66 67.
- Wren et al (2000) Endocrinology **141** 4325. Nagaya et al (2001) Am.J.Physiol.Regul.Integr.Comp. hysiol. 280 1483. Neary et al (2004) J.Clin.Endocrinol.Metab. 89 (2004) 68.
- 2832
- 69
- Wynne et al (2005) J.Am.Soc.Nephrol. 16 2111. Soriano-Guillen et al (2004) J.Pediatr. 144 36. 70.
- Shiiya et al (2002) J.Clin.Endocrinol.Metab. 87 240. English et al (2002) J.Clin.Endocrinol.Metab. 87 2984 71
- 72 Konturek et al (2004) J.Physiol.Pharmacol. 55 137 73
- Theander-Carrillo *et al* (2006) J.Clin.Invest. *116* 1983. Coll *et al* (2007) Cell *129* 251. 74
- 75
- 76
- Andersson et al (2004) J.Biol.Chem. 279 12005 Kola et al (2005) J.Biol.Chem. 280 25196. 77
- Xue and Kahn (2006) J.Physiol. 574 73. 78

- 79 Kola et al (2006) Trends Endocrinol.Metab. 17 205.
- Nakazato et al (2001) Nature 409 194 Shintani et al (2001) Diabetes 50 227 80
- 82
- Chen et al (2004) Endocrinology **145** 2607. Tucci et al (2004) Br.J.Pharmacol. **143** 520. 83
- Wortley et al (2004) Proc.Natl.Acad.Sci.USA 101 8227. Doucet et al (2004) J Clin.Endocrinol.Metab. 89 1727.
- 85
- 86 Asakawa et al (2003) Gut 52 947.
- 87
- Beck et al (2004) Life Sci. 76 473. Halem et al (2004) Eur.J.Endocrinol. 151 S71 88
- Halem et al (2005) Neuroendocrinology 81 339. Kobelt et al (2006) Gut 55 788. 89
- 90
- Shearman *et al* (2006) Endocrinology **147** 1517. Zorrilla *et al* (2006) Proc.Natl.Acad.Sci.USA **103** 13226. 91
- 92 Vizcarra et al (2007) Domest Anim.Endocrinol. 33 176. Biotechnology, C., Phase I/Ila clinical trial with obese individuals shows no effect of CYT009-GhrQb on weight 93 94.
- loss[online]. (2006) Available from URL: http://www.cytos. com/doc/Cytos_Press_E_061107.pdf [Accessed 2008 Oct 301
- Batterham et al (2002) Nature 418 650. 95
- 96
- 97
- Morimoto *et al* (2008) Nutrition **24** 878. Larhammar (1996) Regul.Pept. **62** 1. Michel *et al* (1998) Pharmacol.Rev. **50** 143.
- 99 Neary et al (2004) Clin.Endocrinol. 60 153. Boey et al (2006) Diabetologia 49 1360.
- 100.
- 101. Batterham *et al* (2006) Cell Metab. *4* 223.
 102. Batterham *et al* (2003) N.Engl.J.Med. *349* 941.
- 103.
- 104
- Tschöp et al (2004) Nature 430 165. Field et al (2008) Drugs 68 147. Glaser et al (1988) Horm.Metab.Res. 20 288. 105. 106. Uhe et al (1992) Am.J.Clin.Nutr. 55 28. 107. Asakawa et al (1999) Peptides 20 1445

Asakawa et al (2003) Gastroenterology 124 15
 Katsuura et al (2002) Peptides 23 323.
 Whitcomb et al (1997) Brain Res. 760 137.
 Ritzel et al (1997) Acta Diabetol. 34 18.
 Shimizu et al (1987) Endocrinology 121 1076.
 Turton et al (1996) Nature 379 69.
 Eng (1992) Mt.Sinai.J.Med. 59 147.
 Holst (2005) Curr Opin Endocrinol Diabetes 11.

Scrocchi et al (1996) Nat.Med. 2 1254

129. Dakin et al (2001) Endocrinology 142 4244 130. Dakin et al (2004) Endocrinology 145 2687

Banks et al (1995) Life Sci. 57 1993 Lutz (2005) Curr.Drug Targets 6 181. Mollet et al (2004) Physiol.Behav. 81 149.

131. Baggio et al (2004) Gastroenterology 127 546.
132. Wynne et al (2005) Diabetes 54 2390.

116.

121.

122

123.

124

125.

126.

127

128.

135

136

137

142.

150.

E1173.

Batterham et al (2003) J.Clin.Endocrinol.Metab. 88 3989.
 Asakawa et al (2003) Gastroenterology 124 1325.

Holst (2005) Curr.Opin.Endocrinol.Diabetes 12 56.

Kreymann et al (1987) Lancet 2 1300.
 Gutzwiller et al (2004) Physiol.Behav. 82 17.
 Verdich et al (2001) J.Clin.Endocrinol.Metab. 89 4382.
 Näslund et al (2004) Br.J.Nutr. 91 439.

Seeley et al (2000) J.Neurosci. 20 1616. Riddle et al (2006) Diabetes Metab.Res.Rev. 22 483.

Bataille et al (1982) FEBS Lett. **146** 79. Ghatei et al (1982) J.Clin.Endocrinol.Metab. **57** 488. Cohen et al (2003) J.Clin.Endocrinol.Metab. **88** 4696.

133. Dakin et al (2002) Am.J.Physiol.Endocrinol.Metab. 283

Reidelberger et al (2004) Am.J.Physiol.Regul.Integr. Comp.Physiol. 287 R568.

Comp.Physiol. 207 R366.
 Ratner et al (2004) Diabet.Med. 21 1204.
 Chaudhri et al (2008) Diabetes Care 31 S284.
 Gibbs et al (1973) J.Comp.Physiol.Psychol. 84 488.
 Kissileff et al (1981) Am.J.Clin.Nutr. 34 154.

Lieverse et al (1994) Ann.NY Acad.Sci. 713 268

Asin et al (1992) Pharmacol.Biochem.Behav. 42 699.
 Moran (2000) Nutrition 16 858.

151. **Muuraheinen** *et al* (1993) Am.J.Physiol. **264** R350 152. **Yamada** *et al* (2002) Eur.J.Pharmacol. **440** 281.

153. Gutzwiller et al (1994) Gastroenterology 106 1168.

Inform (2000) Number 10 000.
 I.A. Crawley and Beinfeld (1983) Nature 302 703.
 Lieverse et al (1993) Regul.Pept. 43 83.
 Gutzwiller et al (2000) Am.J.Physiol.Regul.Integr.Comp.

143. Moran et al (1998) Am.J.Physiol. 43 R618. 144. Hewson et al (1988) Br.J.Pharmacol. 93 79.

Physiol. **279** R189. **Gibbs** *et al* (1979) Nature **282** 208.

Fineman et al (2004) Diabetes Metab.Res.Rev. 20 411. Nauck et al (2006) Exp.Clin.Endocrinol.Diabetes 114 417.

- 224. Remaury et al (2002) Brain Res. 953 63.
- 225. Tritos et al (1998) Diabetes **47** 1687. 226. Davenport et al (2005) Pharmacol.Rev. **57** 541.
- 227. Lee et al (1996) Nature **379** 632. 228. Tartaglia et al (1995) Cell **83** 1263
- 229. Air et al (2002) Endocrinology 143 2449
- Shanley et al (2001) J.Neurosci. 21 RC186.
 Seino and Bell (1989) Biochem.Biophys.Res.Commun. **159** 312
- 232. Fetissov et al (2004) J.Comp.Neurol. 470 256.
- Merchenthaler *et al* (1999) J.Comp. Neurol. *403* 261.
 Lutz (2006) Physiol.Behav. *89* 465.
- 235. Frankfurt et al (1985) Brain Res. 358 53
- 236. Wank (1998) Am.J.Physiol. 274 G607. 237. Moran and Kinzig (2004) Am.J.Physiol.Gastrointest.Liver
- Physiol. **286** G183. 238. **Minamino** *et al* (1988) Ann.NY.Acad.Sci. **547** 373.
- 239. Parker and Herzog (1999) Eur.J.Neurosci. *11* 1431. 240. Mullins *et al* (2000) Eur.J.Pharmacol. *395* 87.
- 241. Zhang and Felder (2004) Am.J.Physiol.Regul.Integr. Comp.Physiol. **286** R303. **Chambers** *et al* (1999) Nature **400** 261.
- Hervieu et al (2000) Eur.J.Neurosci. 12 1194.
 Lagny-Pourmir and Epelbaum (1992) Neuroscience 49
- 829 245. Sergevey et al (2001) Brain Res. Mol. Brain Res. 90 93
- 246. Tempel and Zukin (1987) Proc.Natl.Acad.Sci.USA 84 4308
- 247. George et al (1994) Biochem.Biophys.Res.Commun. 205 1438
- 248. Desjardins et al (1990) Brain Res. 536 114. 249. Schnell and Wessendorf (2004) J.Comp.Neurol. 473
- 213.
- 250. Sim and Childers (1997) J.Comp.Neurol. 386 562. 251. Mansour et al (1987) J.Neurosci. 7 2445.
- 252. Rothman et al (2003) Peptides 24 413.
- 253 Beck et al (1995) Metabolism 44 972
- 254. Olszewski et al (2003) Peptides 24 919.

- 255. Fogteloo et al (2003) Diabetes Nutr.Metab. 16 109. 256. Rozhavskaya-Arena et al (2000) Endocrinology 141
- 2501
- 257. Fujita et al (2003) Exp.Biol.Med. 228 1156. 258. Verploegen et al (1997) FEBS Lett. 405 237
- 259. Rajapurohitam et al (2006) J.Mol.Cell Cardiol. 41 265.
- 260. Schaffer et al (2003) Proc.Natl.Acad.Sci.USA 100 4435. 261. Berg et al (2001) Nat.Med. 7 947.

- 262. Yamauchi et al (2002) Nat.Med. 8 1288. 263. Challis et al (2004) Proc.Natl.Acad.Sci.USA 101 4695. 264
- Hagan (2002) Peptides 23 377. 265. Bonaventure et al (2004) J.Pharmacol.Exp.Ther. 308
- 1130.
 - 266
 - Parker et al (2001) Peptides 22 887. Flynn et al (1999) Physiol.Behav. 65 901. 267.
 - 268. Cabrele et al (2000) J.Biol.Chem. 275 36043 269. Göke et al (1993) Biol.Chem. 268 19650.

 - Thorens *et al* (1993) Diabetes **42** 1678. Arnelo *et al* (1998) Am.J.Physiol. **275** R1537 270. 271.
 - Leighton et al (1989) Eur.J.Pharmacol. 161 255.

 - 273. Loftus *et al* (2000) Science 288 2379.
 274. Bignon *et al* (1999) J.Pharmacol.Exp.Ther. 289 752.
 - Baldwin and Sukhchai (1996) Physiol.Behav. 60 231. Reidelberger et al (2003) Am.J.Physiol.Regul.Integr. 275 276.
 - Comp.Physiol. 284 R389. Andre et al (2005) J.Neurosci. 25 7896. 277
 - Hughes et al (2009) Pharmacol. Biochem. Behav. 53 493.
 Hughes et al (1990) Proc.Natl.Acad.Sci.USA 87 6728.

 - Gully et al (1993) Eur.J.Pharmacol. 232 13. 280.

 - 281. Ashwood et al (1998) Bioorg.Med.Chem.Lett. 8 2589 282. Ryan et al (1999) J.Pharmacol.Exp.Ther. **290** 1202.
 - 283
 - Orbuch et al (1993) Mol.Pharmacol. 44 841. Laferrère et al (1992) Eur.J.Pharmacol. 215 23 284
 - 285
 - Wren et al (2001) Diabetes 50 2540. Sun et al (2004) Proc.Natl.Acad.Sci.USA 101 4679. 286.
 - Holst et al (2003) Mol.Endocrinol. 17 2201. 287
 - Pinilla et al (2003) Neuroendocrinology 77 83. 288
 - 289. Kanatani et al (2000) Biochem.Biophys.Res.Commun.

272 169

- Kanatani et al (1996) Endocrinology 137 3177. 200
- 291. Kanatani et al (1999) Biochem.Biophys.Res.Commun 266 88
- 292 Mashiko et al (2003) Endocrinology 144 1793
- Pheng et al (2003) Br.J.Pharmacol. 139 695. 293.
- 294. **Hyland** *et al* (2003) Br.J.Pharmacol. **139** 863. 295. **Della-Zuana** *et al* (2004) Int.J.Obes.Relat.Metab.Disord. 28 628
- 296. Lecklin et al (2003) Br.J.Pharmacol. 139 1433.
- 297. Heinrichs et al (1993) Brain Res. 611 18. 298. Myers et al (1995) Brain Res.Bull. 37 237
- Antoni evic et al (1000) bitmin (es. 1007 cm), 57 2017.
 Antoni evic et al (2000) Neuropharmacology 39 1474.
 Kanatani et al (2001) Mol.Pharmacol. 59 501.
 Balasubramaniam et al (2002) Peptides 23 1485.
- 302. Balasubramaniam *et al* (2001) J.Med.Chem. *44* 1479 303. Islam *et al* (2002) Bioorg.Med.Chem.Lett. *12* 1767.
- Wieland *et al* (1998) Br.J.Pharmacol. *125* 549.
 Doods *et al* (1999) Eur.J.Pharmacol. *384* R3.
- 306. Wielgosz-Collin et al (2002) J.Enzyme Inhib.Med.Chem 17 449.
- Chaki et al (2003) Eur.J.Pharmacol. 474 95. 307.
- 308. Gao et al (2004) Anal.Biochem. 328 187 309. Rossi et al (1999) Brain Res. 846 164.
- Chaki et al (2005) J.Pharmacol.Exp.Ther. 313 831.
 Smith et al (2006) Neuropsychopharmacology 31 1135.
 Soffin et al (2002) Neuropharmacology 42 127.

- 313. Ida et al (1999) Brain Res. 821 526.
 314. Koegler et al (1999) Physiol.Behav. 67 259
- Rospiel and Levine (1996) S.J. Cooper and P.G. Clifton, Editors. 1996, Academic Press: London. p. 147.
- 316. Kim et al (2002) Peptides 23 1069.
 317. Sarhan et al (1997) Peptides 18 1223.

Potent, competitive inhibitor of CCK-inactivating serine protease

- 318. Dubuc et al (1992) Eur.J.Pharmacol. 219 327.
- Peptide Receptor Compounds Available from Tocris

1150

1166

3466

3467

3468

3469

3008

1450

2696

1179

1451

3425

2697

2698

3374

1463

1465

1346

2260

M40

M617

M871

Ghrelin Receptors

Cortistatin 14

Ghrelin (rat)

Ghrelin (human)

des-GIn¹⁴-Ghrelin (rat)

but is active in vivo

3033 Cortistatin-8

Non-selective CCK 1323 Butabindide oxalate

Galanin Receptors

Anti-GAL₂

Anti-GAL₃

2699 AR-M 1896

CCK Octapeptide, non-sulfated

CCK Octapeptide, sulfated

Selective GAL₂ agonist

Anti-GAL₁ (C Term)

Anti-GAL₁ (internal)

Galanin (porcine)

Antibody recognizing GAL,

Antibody recognizing GAL₃

Galanin (1-15) (porcine, rat)

Galanin (1-29) (rat, mouse)

Galanin receptor agonist peptide

Modulator of neurotransmission

Selective GAL₂ peptide agonist

Non-selective galanin receptor agonist

Potent, non-selective galanin receptor antagonist

Endogenous neuropeptide; binds GHS-R and sst1 - sst5

Major circulating form of ghrelin; devoid of activity at ghrelin receptor

Galanin receptor agonist

Galanin (1-30) (human)

Galanin (2-29) (rat)

Selective GAL₁ agonist

Selective GAL₂ antagonist

Ghrelin receptor antagonist

Endogenous ghrelin receptor agonist

Endogenous ghrelin receptor agonist

Endogenous ghrelin receptor ligand

[Des-octanoyl]-Ghrelin (human)

C-terminal octapeptide of CCK

Non-sulfated form of CCK octapeptide

Antibody recognizing GAL₁ (C' terminus)

Antibody recognizing GAL₁ (internal region)

Bombesin Receptors

- 3237 BIM 23042
- Selective neuromedin B receptor (BB1) antagonist BIM 23127 1839
- NMB receptor antagonist. Also U-II receptor antagonist 3422 [D-Phe12,Leu14]-Bombesin
- Bombesin receptor antagonist
- GRP (human) 1789
- Endogenous GRP receptor agonist
- 0823 ICI 216.140
- Potent Bombesin/Gastrin releasing peptide antagonist 2602 PD 176252

Endogenous peptide agonist for amylin receptors (AMY₁₋₃)

Potent and selective CCK1 agonist. Suppresses feeding

GRP (BB₂) and NMB (BB₁) receptor antagonist

Calcitonin and Related Receptors

Cholecystokinin (CCK) Receptors

Antibody recognizing CCK₁ Anti-CCK₁ (mouse)

Antibody recognizing CCK₂

Gastrin I (human)

Selective CCK₂ agonist

Potent CCK2 antagonist

Selective CCK₂ antagonist

Potent and selective CCK1 agonist

Antibody recognizing mouse CCK₁

Potent and selective CCK1 antagonist

Potent and selective CCK₂ antagonist

Potent and selective CCK₂ antagonist

Highly potent, selective non-peptide CCK₂ antagonist

Selective, orally active CCK1 receptor antagonist

3419 AC 187 Potent and selective amylin receptor antagonist

CCK, Receptor

Amvlin

A-71623

AR-R 15849

Anti-CCK₁

Devazepide

SR 27897

Anti-CCK₂

LY 225910

LY 288513

PD 135158

YM 022

Receptor

CI 988

3418

2411

3423

3456

3457

2304

2190

CCK,

3458

2607

3006

1018

1524

2608

1408

18

1922	[D-Lys³]-GHRP-6
	Ghrelin receptor antagonist
2261	L-692,585 Potent, non-peptide ghrelin receptor agonist
1946	[D-Arg¹,D-Phe ⁶ ,D-Trp ^{7,9} ,Leu ¹¹]-Substance P Potent ghrelin receptor full inverse agonist. Also antagonist at other neuropeptide receptors. Anticancer <i>in vitro</i>
2308	Tabimorelin hemifumarate Potent, orally active ghrelin receptor agonist
Gluca	agon and Related Receptors
GIP R	eceptors
2084	GIP (human)
0057	Potent insulinotropic gut hormone
	GIP (1-39) Highly potent insulinotropic peptide
	gon Receptors
2216	des-His ¹ -[Glu ⁹]-Glucagon (1-29) amide Glucagon receptor antagonist
2311	
	Potent, orally active human glucagon receptor antagonist
	gon-Like Peptide 1 Receptors
2081	Exendin-3 (9-39) amide
1933	Potent GLP-1 receptor antagonist Exendin-4
1933	Potent GLP-1 receptor agonist
3266	GLP-1 (9-36) amide
	Metabolite of GLP-1-(7-36) (Cat No. 2082)
1851	Glucagon-like peptide 1 (1-37) (human, rat)
	Endogenous pancreatic peptide
2082	Glucagon-like peptide 1 (7-36) amide (human, rat) Potent insulinotropic peptide
2094	
	Endogenous gut peptide; modulates feeding and metabolism
Gluca	gon-Like Peptide 2 Receptors
2258	GLP-2 (human)
	Endogenous hormone; displays intestinotrophic activity
2259	GLP-2 (rat) Endogenous hormone; displays intestinotrophic activity
Groud	th-hormone Releasing Hormone Receptors
1187	• • •
	Stimulates growth hormone release
	tin Receptors
4040	Convertine (human)

1918 Secretin (human)

Gastrointestinal peptide 1919 Secretin (rat) Gastrointestinal peptide

Insulin and Insulin-like Receptors

- 1819 Demethylasterriquinone B1
- Selective insulin RTK activator
- 3435 Insulin (human) recombinant, expressed in yeast Endogenous peptide agonist
- 2768 PQ 401 IGF-IR inhibitor

Leptin Receptors

2985 LEP (116-130) (mouse) Synthetic leptin peptide fragment

Malanin-concentrating Hormone Receptors

- 3434 [Ala¹⁷]-MCH
- Potent, non-selective MCH receptor agonist

Melanocortin Receptors

- 1831 HS 014
- Selective MC₄ receptor antagonist **1832 HS 024**
- Highly potent MC₄ receptor antagonist **3426** JKC 363
- Potent and selective MC₄ receptor antagonist 3476 Anti-MC₂
- Antibody recognizing MC₂
- 3477 Anti-MC₃
- Antibody recognizing MC₃ 3438 MCL 0020
- Selective MC₄ receptor antagonist **2566 Melanotan II**
- High affinity melanocortin receptor agonist 2584 α-MSH
- Endogenous melanocortin receptor agonist 3013 [NIe⁴,D-Phe⁷]-α-MSH
- Melanocortin receptor agonist 3424 γ1-MSH
- Selective MC₃ receptor agonist

3420 SHU 9119

- MC₃ and MC₄ receptor antagonist
- **3032 THIQ** Potent and selective MC₄ receptor agonist
- Neuropeptide Y Receptors BIBP 3226 trifluoroacetate 2707 Mixed NPY Y1 and NPFF receptor antagonist 1700 BIIE 0246 formate Potent, selective non-peptide NPY Y₂ antagonist 2177 **BVD 10** Highly selective Y₁ antagonist; devoid of Y₄ agonist activity 2035 **BWX 46** Highly selective Y_e agonist CGP 71683 hydrochloride 2199 Highly selective and potent non-peptide NPY Y₅ receptor antagonist GR 231118 1486 Potent NPY Y1 antagonist/NPY Y4 agonist. Binds to NPFF receptors 1382 L-152,804 Potent, selective non-peptide NPY Y₅ antagonist 1153 Neuropeptide Y (human, rat) Influences feeding and sexual behavior Neuropeptide Y (porcine) 1173 Influences feeding and sexual behavior Neuropeptide Y 13-36 (porcine) 1177 Y, receptor agonist [Leu³¹,Pro³⁴]-Neuropeptide Y (human, rat) 1176 NPY Y₁ receptor agonist [D-Trp³⁴]-Neuropeptide Y 3436 Potent NPY Y₅ agonist; stimulates feeding in vivo 2155 NTNCB hydrochloride Potent and selective non-peptidic Y5 antagonist 1154 Pancreatic Polypeptide (human)
 - NPY Y₄ agonist; involved in gastrointestinal tract function 1365 [cPP¹⁻⁷,NPY¹⁹⁻²³,Ala³¹,Aib³²,Gln³⁴] -hPancreatic Polypeptide
 - Potent, selective neuropeptide Y Y_5 agonist **PD 160170**
 - 2200 PD 160170 Selective non-peptide NPY Y, antagonist
 - 1618 Peptide YY (3-36)
 - Selective Y₂ receptor agonist 3432 S 25585

Potent, selective NPY Y₅ antagonist

Neurotensin Receptors

- 1998 JMV 449
- Potent neurotensin receptor agonist
- 2309 SR 142948 Highly potent NT receptor antagonist

Opioid Receptors

μ Receptors

Agonists

1171 DAMGO

- Selective μ agonist
- **1055 Endomorphin-1** Potent and selective μ agonist
- Antagonists

1560 CTAP

- Selective and potent µ antagonist
- 1578 CTOP
- Highly selective, potent μ antagonist δ Receptors

Agonists

- 1431 DPDPE
- Selective δ agonist
- 0764 SNC 80
 - Highly selective non-peptide δ agonist

Antagonists 0899 BNTX maleate

- Standard δ₁ selective antagonist 0820 ICI 174,864
 - δ selective peptide antagonist

к Receptors

Agonists

- 2134 Salvinorin A
- Highly potent and selective κ-opioid agonist **0495** (±)-**U-50488 hydrochloride** Standard selective κ agonist

Antagonists

- 0347 nor-Binaltorphimine
- Standard κ selective antagonist 0794 DIPPA hydrochloride Selective irreversible κ antagonist

1282 GNTI dihydrochloride

Potent, selective κ antagonist

NOP Receptors

Agonists

- 1780 NNC 63-0532 Potent non-peptide NOP agonist; brain penetrant
 0910 Nociceptin
- Endogenous NOP agonist

Antagonists

2598 (±)-J 113397

- Potent and selective NOP antagonist 1552 UFP-101
 - Potent, selective silent antagonist for NOP

Orexin Receptors

OX₁ Receptors

- **1960 SB 334867** Selective non-peptide OX₁ antagonist
- **1963** SB 408124 Selective non-peptide OX₁ antagonist

OX₂ Receptors

- 2142 [Ala¹¹,D-Leu¹⁵]-Orexin B Potent, selective OX₂ receptor agonist 3483 Anti-OX₂
- Antibody recognizing OX₂
- 3371 TCS OX2 29
- Potent and selective OX₂ antagonist Non-selective OX

1455 Orexin A (human, rat, mouse)

- Endogenous agonist at OX₁ and OX₂
- **1456** Orexin B (human) Endogenous agonist at OX₁ and OX₂
- **1457** Orexin B (mouse) Endogenous agonist at OX₁ and OX₂
- **3482** Anti-OX₁ and OX₂ Antibody recognizing OX₁ and OX₂

Tachykinin Receptors

NK₁ Receptors

- 2400 FK 888
- High affinity NK₁ receptor antagonist **1669 GR 73632**

Potent, selective NK1 agonist

0868 L-732,138

- Potent, selective NK₁ antagonist **1145** L-733,060 hydrochloride
- Potent NK₁ antagonist
- 3479 Anti-NK
- Antibody recognizing NK1
- 1635 RP 67580 Potent and selective NK, antagonist 1784 Spantide I
- **1784 Spantide I** Selective NK₁ antagonist
- **1178** [Sar⁹,Met(O₂)¹¹]-Substance P Potent, selective NK₁ agonist

NK₂ Receptors 1668 GR 64349

- Potent, selective NK₂ agonist
- 1667 GR 94800 Potent, selective NK₂ antagonist
- 1274 GR 159897 Non-peptide, potent NK₂ antagonist
 1632 MEN 10376
- Potent, selective NK₂ antagonist
- 1640 [bAla[®]]-Neurokinin A(4-10) NK₂ agonist
- 3228 [Lys⁵, MeLeu⁹, Nle¹⁰]-NKA(4-10) Selective NK₂ agonist

NK₃ Receptors

- 1376 SB 218795
- Potent, selective non-peptide NK₃ antagonist **1393** SB 222200
- Potent, selective non-peptide $NK_{\rm 3}$ antagonist. Brain penetrant $1068\ Senktide$
- Tachykinin NK₃ agonist
- Other Tachykinin Receptors
- 1152 Neurokinin A (porcine) Endogenous tachykinin peptide
- 1156 Substance P
- Sensory neuropeptide, inflammatory mediator **1946** [D-Arg¹,D-Phe⁵,D-Trp^{7,9},Leu¹¹]-Substance P
- Substance P analog and broad spectrum neuropeptide receptor antagonist/inverse agonist. Anticancer *in vitro*

Other Peptide Receptors

3339 CART (62-76) (rat, human) Neuromodulating neuropeptide fragment; inhibits food intake *in vivo*

UK:

Tocris Reviews No. 31 ©2009 Tocris Cookson

TOCRIS b i o s c i e n c e

www.tocris.com

Phone: + 44 (0)117 916 3333 Fax: + 44 (0)117 916 3344 customerservice@tocris.co.uk Tocris House, IO Centre, Moorend Farm Avenue, Avonmouth, Bristol, BS11 0QL, UK US: Phone: 800-421-3701 Fax: 800-483-1993 customerservice@tocrisusa.com 16144 Westwoods Business Park, Ellisville, Missouri 63021 USA