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Background
The transmission of extracellular signals into 
intracellular responses is a complex process which 
often involves the activity of one or more mitogen-
activated protein kinases (MAPKs).1 The activation 
of a MAPK employs a core three-kinase cascade 
consisting of a MAPK kinase kinase (MAP3K or 
MAPKKK) which phosphorylates and activates 
a MAPK kinase (MAP2K, MEK, or MKK) which 
then phosphorylates and increases the activity 
of one or more MAPKs. Upon activation, MAPKs 
can phosphorylate a variety of intracellular targets 
including transcription factors, nuclear pore proteins, 
membrane transporters, cytoskeletal elements, and 
other protein kinases.

Discovery of MAPKs
The MAPKs extracellular signal regulated protein 
kinases 1 and 2 (ERK1/2) were first identified as 
mitogen-stimulated ~42 kDa phosphoproteins in the 
early 1980s, and later as insulin and nerve growth 
factor (NGF)-stimulated activities that retained 
the ability to phosphorylate the model substrates 
microtubule-associated protein-2 (MAP2) and myelin 
basic protein (MBP).2-8 The activities of ERK1/2 were 
shown to reactivate phosphatase-treated ribosomal 
protein S6 kinase (RSK or p90).4,9

In the following years, the MAPK family was discovered 
to include three c-Jun N-terminal kinases (JNK), four 
p38 isoforms, ERK3 isoforms, ERK5 and ERK7. 
The first JNK family members were independently 
identified as cycloheximide-activated MBP kinases 
and purified due to their ability to interact with the 
N-terminus of the transcription factor c-Jun.10,11 p38α 
was identified as an inflammatory cytokine-stimulated 
tyrosine phosphoprotein, a target of an inhibitor of 
tumor necrosis factor α (TNFα) production, and a 
re-activating kinase for MAPK-activated protein 
kinase-2 (MAPKAP2 or MK2).12-14 PCR-based 
cloning strategies and a two-hybrid screen led to the 
discovery of additional JNK and p38 isoforms and 
ERKs 5 and 7 reviewed by Chen et al15 and Lewis et 
al.16 A summary of the cellular processes involving 
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these MAPKs is shown in Figure 2. Detailed reviews 
by Adnane et al, Daaka et al and Dang et al are also 
recommended for further information.1,16,17

Upstream regulation of ERK1/�
The collaborative findings from a number of 
laboratories led to the connection of ERK1/2 to their 
upstream regulators MAPK/ERK kinase 1 and 2 
(MEK1/2); the identification of Raf isoforms as 
upstream activators of these MAP2Ks; and the 
observation that Raf is an effector of Ras small GTP 
binding proteins.18-24 Isoforms of Ras and Raf are 
found mutated in a variety of human tumors, 
implicating ERK1/2 in proliferation and oncogenic 
growth.25,26 Although regulation through this pathway 
is exceedingly complex, the potential of this MAPK 
pathway to promote tumorigenesis was later 
supported by the demonstration that an activated 
mutant of MEK1 transformed cells and promoted 
growth of tumors in nude mice.27 Subsequently, 
through the use of dominant interfering mutants, 
pharmacological inhibitors of MEK1/2, gene 
disruption and RNA interference, these ubiquitous 
kinases have been shown to be intimately involved in 
normal processes including embryogenesis, cell 
differentiation, glucose sensing and synaptic 
plasticity.28-33

MAP�Ks
MEK1, an exemplary MAP2K, was purified as a 
~45 kDa biological activator of ERK1/2.34-36 The 
identification of additional MAP2Ks (MEKs 2-7), all 
of roughly equivalent size, employed DNA-based 
molecular techniques as opposed to protein 

purification reviewed by Chen et al15 and Lewis et 
al.16 These kinases are unusual in that they are dual-
specificity kinases, phosphorylating both tyrosine 
and serine/threonine residues. Unlike MAPKs, which 
phosphorylate a wide range of proteins, MAP2Ks are 
highly specific: they are dedicated to phosphorylation 
of only one or a couple of MAPKs and few, if any, 
other substrates. MAP2Ks integrate signals from 
multiple regulatory inputs and serve as points of signal 
integration, in part through scaffolding proteins and 
docking site-mediated protein-protein interactions. 

Raf isoforms and other MAP3Ks
The most readily identifiable feature of MAPK 
signaling is the three kinase cascade consisting of a 
MAP3K, a MAP2K and a MAPK. The three-kinase 
organization of this cascade is identical to that of the 
three-kinase cascade of Ste11 (MAP3K) - Ste7 
(MAP2K) - Fus3/Kss1 (MAPK) in the yeast pheromone 
response pathway.37 MAP2Ks and MAPKs are 
related in sequence throughout metazoans, although 
Raf proteins do not seem to have counterparts 
identified in yeast. Interestingly, Raf was originally 
discovered as a retroviral oncogene.38 Three 
isoforms, c-Raf (or Raf-1), B-Raf and A-Raf, are 
found in mammals. In addition to the core ~35 kDa 
kinase domain, Raf proteins contain an N-terminal 
regulatory region, also about 35-40 kDa, which can 
bind Ras. Raf proteins specifically phosphorylate 
only the MAP2Ks MEKs1 and 2, and were initially 
thought to function in a tissue-specific manner. More 
recent studies, aided by the development of B-Raf 
inhibitors as anticancer agents, led to the 
understanding that Raf isoforms dimerize.39,40 The 
unanticipated actions of these B-Raf inhibitors 
provoked more in-depth molecular analysis showing 
that dimerization can enhance Raf activity and that 
Raf heterodimers have different activities.41-43

Two other enzymes that function as MAP3Ks in 
the ERK1/2 pathway are Mos and Tpl2 (Cot), 
both originally identified as proteins that could 
transform cells.44,45 These enzymes function only 
in specialized situations and when present, they 
activate the cascade; Mos is expressed primarily 
in oocytes, while Tpl2 is stabilized in response to 
lipopolysaccharide.46,47

The parallels between yeast and mammalian 
signaling led investigators to search for Ste11 
homologs in mammals. MEKK1 was the first 
mammalian MAP3K identified from its homology to 
Ste11.48,49 In contrast to the selectivity displayed by 
Raf MAP3Ks, MEKK1, a large protein of 195 kDa, 
displayed the ability to phosphorylate several 
MAP2Ks (MEKs 1-4, 6 and 7) in vitro. Early evidence 
suggested that MEKK1 was a regulator of MEK1/2, 
but gene disruption experiments and numerous 
biochemical analyses indicate that MEKK1 
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predominantly coordinates downstream signaling 
through activation of MEKs 4 and 7 and the JNK 
pathway.50-53 Subsequent isolation of related cDNAs 
have led to the discovery of a family of related 
enzymes (i.e. MEKKs 1-4; ASK1,2; TAK1) reviewed 
by Raman et al1 and Johnson et al.54 As a group, 
these enzymes also display broader substrate 
specificity than Raf and probably regulate multiple 
MAPK pathways in context-dependent processes. 
Non-Ste11 homologs, such as the Ste20 homologs 
TAOs 1-3 are MAP3Ks that regulate the p38 
pathway.1 

Figure 2 presents a simplified model of the 
organization of MAPK cascades. Of note are the 
number of MAP2K-MAPK combinations a given 
MAP3K can regulate and the resulting points of 
cross-talk. How the organization of MAPK cascades 
affects their function will be discussed next.

Properties of MAPK cascades
Signaling features of both mammalian Raf-MEK1/2-
ERK1/2 and the yeast cascades initially provided an 
insight into the primary features of MAPK signaling. 
Generally similar mechanisms of regulation exist in 
other MAPK cascades, although it is expected that 
additional novel features will be found. The impact 
of scaffolds and cascade localization are still not well 
integrated into current models. As mechanistic insight 
has accumulated, the complexity of these pathways, 

in spite of the apparent simplicity of the three-kinase 
unit, must be acknowledged. Also the regulatory 
plasticity that accrues from the three-kinase cascade 
should not be underestimated.

The conventional view of a signaling cascade was 
developed from the first studied kinase pathway, 
cAMP-dependent protein kinase (PKA). Amplification 
occurred because components were more abundant 
moving down the cascade. The cooperative, switch-
like behavior in this pathway derives from the 
requirement of four cAMP molecules to activate 
PKA.55 This requirement may not apply unilaterally to 
MAPK pathways. MEK1/2 are much more abundant 
than Raf proteins, but MEK1/2 are in some cases 
as abundant as ERK1/2.56,57 The MAPK pathway 
exhibits a similar switch-like behavior that guarantees 
a threshold to prevent activation of the pathway by 
noise in the system. This behavior is mechanistically 
distinct and partly derives from nonprocessive dual 
phosphorylation of MAPKs by MAP2Ks. MAPKs 
contain a poorly conserved loop that lies C-terminal 
to the catalytic residues, referred to as the activation 
loop. This loop contains a TXY motif. Phosphorylation 
of both the threonine and tyrosine residues of this 
motif by MAP2Ks is required to activate MAPKs.58 
In cells, the phosphorylation of tyrosine before 
threonine introduces the activation threshold and 
rapid cooperative activation.59,60

Figure 2 | MAP Kinase Networks
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members of the Raf family, but are pseudokinases 
because they lack the essential ATP-binding lysine 
residue. In mammals KSR1 and KSR2 bind ERK1/2, 
MEK1/2 and Raf isoforms. They interact with Raf 
proteins and can allosterically activate Raf.41 Other 
proteins that influence assembly and activation 
of MAPK pathways include Sur8, CNK, MP-1 and 
IMP.80-83

Activation of MAPKs from the cell 
surface
Tyrosine kinase receptor activation of 
ERK1/�
ERK1/2 are activated by a wide variety of stimuli 
that act through cell surface receptors. Of all the 
signaling pathways emanating from these receptors, 
the pathway from receptor tyrosine kinases to 
ERK1/2 is the best delineated.1,16,17 Ligand binding 
to receptor tyrosine kinases stimulates homo- and/
or heterodimerization of the receptors and increases 
their tyrosine kinase activity. Activated receptors can 
then phosphorylate themselves and their dimerization 
partners, creating phosphotyrosine motifs. These 
motifs are recognized by SH2 domains that exist in 
a variety of proteins including the adaptor proteins 
Shc and Grb2. The SH3 domain of the Ras guanine 
nucleotide exchange factor son of sevenless (SOS) 
interacts with proline-rich regions on the receptor-
bound adaptor proteins, completing the formation of 
a Ras-activating complex at the plasma membrane. 
After association with the receptor-adaptor protein 
complex, SOS stimulates the exchange of GDP for 
GTP on Ras. When GTP-bound, Ras interacts with 
a number of downstream effectors including Raf.20,21 
The direct interaction of Ras with Raf isoforms 
localizes them to the plasma membrane, which may 
serve to bring them in proximity to non-receptor 
kinases such as Src family members, and serine/
threonine kinases including p21-activated kinases 
(PAKs) and protein kinase C (PKC) isoforms. These 
kinases may phosphorylate Ras-Raf isoforms and 
further increase their activity towards substrates 
or enhance their interactions with other proteins.84-

87 Upon activation, Raf isoforms can activate the 
MEK1/2-ERK1/2 pathway as discussed above. 

Activation of MAPKs by G-protein-coupled 
receptors
Many hormones act through G-protein-coupled 
receptors (GPCRs) to increase ERK1/2 activity. 
Agonist binding to Gαs-coupled receptors results in 
the activation of adenylyl cyclase, which raises the 
intracellular concentration of cAMP. Elevated cAMP 
levels can increase, decrease or have no effect on 
the activity state of ERK1/2 in a manner dependent 
on cell type, and perhaps other factors yet to be 
defined.1 Inhibition of ERK1/2 activity is believed to 
involve phosphorylation of serines 43 and 621 on 

The existence of three proteins in series provides for 
multiple points of regulatory input. For example, Raf 
isoforms are phosphorylated on numerous sites by 
several protein kinases that increase or decrease 
activity and influence protein-protein interactions.61 
Prominent among these regulatory inputs are sites of 
feedback phosphorylation by ERK1/2 that interfere 
with re-activation of Raf by Ras.62,63 Raf isoforms also 
interact with a variety of adaptor proteins.64 MAP2Ks 
are also phosphorylated at other sites in addition 
to activating sites in their activation loops.65-67 For 
example, phosphorylation of MEK1/2 in unique insert 
regions disrupts their ability to interact with Raf.65,68,69 
To summarize, the fidelity of signaling to ERK1/2 is 
dictated by the integration of a broad collection of 
signals that can be communicated at multiple levels 
in the pathway.

Scaffolding proteins
Scaffolds have a major influence on cascade function 
strongly impacting on the activities and outputs 
of MAPK pathways. Best described by the yeast 
example Ste5, scaffolds are paramount for achieving 
MAPK specificity.64,70,71 The yeast MAP3K, Ste11, can 
activate either Ste7, a MAP2K for the MAPKs Kss1 
and Fus3, in response to pheromone; or Pbs2, the 
MAP2K for Hog1 (the yeast p38 MAPK) in response 
to osmotic stress.72 Scaffolding proteins dictate 
which signal activates Ste11 and which MAP2K is 
targeted for activation by Ste11. In the pheromone 
response, Ste5 scaffolds the interaction of Ste11 with 
Ste7, whereas the ability of Pbs2 to create a stable 
interaction of Ste11 with the osmosensor Sho1 allows 
Ste11 to act in the osmotic response.73 

As noted above, mammalian signaling has similar 
complexities, suggested by the many observations 
showing that individual MAP3Ks can regulate 
multiple MAPK cascades. Nevertheless, no obvious 
Ste5 homolog has been identified in mammals. The 
scaffolding work is likely to be distributed among 
several different types of proteins in mammals and 
may often be “wrapped” within some of the upstream 
enzymes. Several MAP3Ks contain docking sites 
that allow them to bind stably to specific MAPKs. 
For example, MEKK1 binds tightly to JNKs through a 
docking motif.74 Stable interactions with MAPKs may 
be mediated by at least two short sequence motifs, 
the docking (D or DEJL) motif and the FXF (DEF) 
motif.75,76 One or more of these motifs are often 
present in scaffolds, activators, certain phosphatases 
and many substrates. JNK-interacting protein (JIP) 
scaffolds which organize JIP and sometimes p38 
MAPK pathways have some functional parallels 
to Ste5s.64,77 The scaffold kinase suppressor of 
Ras (KSR) was discovered in the sevenless eye 
development pathway in Drosophila and in the vulval 
induction pathway of C. elegans.78,79 KSR proteins are 
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c-Raf by cAMP-activated protein kinase (PKA).88 The 
N-terminal phosphorylation is reported to reduce the 
ability of c-Raf to interact with Ras.89 Phosphorylation 
of serine 621 reduces c-Raf activity by disturbing 
binding to 14.3.3 protein.90 

Increasing cAMP levels in cells of neuroendocrine 
origin typically stimulates ERK1/2 activity.30,91 The 
activation of ERK1/2 may involve Ras itself or the 
Ras-related monomeric G-protein Rap-1, which can 
be activated by cAMP-activated guanine nucleotide 
exchange factors (GEFs).92-94 It has also been 
suggested that Gαs coupled receptor activation of 
ERK1/2 involves Src.95,96 Src may be activated by 
direct interaction with β-arrestin molecules that are 
engaged with internalized GPCRs.96 In either case, 
activated Src, can directly influence c-Raf activity 
by phosphorylating sites that lie N-terminal to its 
kinase domain or by stimulating recruitment of SOS 
to receptor tyrosine kinases (RTKs).97

In vivo evidence indicates Gαi-coupled receptor 
activation of ERK1/2 most likely employs the βγ 
subunits of heterotrimeric G-protein complexes.98,99 
Through use of a βγ sequestering peptide, it has been 
suggested βγ subunits are necessary for Gαi-coupled 
receptor ligand stimulation of ERK1/2.99 Consistent 
with this observation, exogenous expression of βγ 
is sufficient to activate ERK1/2.98 Both Gαi-coupled 
receptor ligands and overexpressed βγ subunits 
require Src activity to stimulate ERK1/2.98,100 Src 
activation by βγ subunits is not likely to involve 
direct interaction of the proteins; rather it has been 
proposed that PI-3 kinase γ serves as an intermediary 
in the activation mechanism.101 Regardless of the 
mechanism employed, Src can activate ERK1/2 in 
the same manner as described for Src activation of 
ERK1/2 stimulated by Gαs.

Activation of ERK1/2 by Gαq-coupled receptors may 
require both Ras and PKC.100,102,103 Upon activation, 
Gαq directly activates PLCβ, which cleaves 
phosphatidylinositol 4,5-bisphosphate (PIP2) to 
generate inositol triphosphate (IP3) and diacylglycerol 
(DAG). The DAG produced and the increase in 
intracellular Ca2+ resulting from IP3 production can 
activate certain PKC isoforms. Phosphorylation of c-
Raf by PKC can increase c-Raf activity.87 

Inhibition of MAPK pathways
MAPK function studied by inhibition
Researchers utilize loss-of-function experiments 
such as dominant-negative mutants, gene silencing 
by RNA interference, and inhibitors of components 
of the MAPK signaling pathway to determine the 
dependence of a particular cellular function on a 
kinase pathway. Both a troublesome and a useful 
feature to the dominant-negative approach is that 
MAPKs are activated by overlapping upstream 

pathways and share common substrates causing 
the dominant-negative mutant to inhibit more than 
one target. Thus, a kinase-dead MAP2K may 
inhibit the activation of all the MAPKs it regulates. 
Gene silencing approaches using RNA interference 
may require targeting multiple closely related 
enzymes and rescue experiments are important to 
demonstrate that a phenotype is not due to off-target 
effects. Pharmacological inhibitors of components 
of the MAPK pathway are often a viable alternative 
or a complementary tool in understanding the 
functional requirement in a given pathway. Many 
inhibitors bind to the ATP binding pocket common to 
all protein kinases. Allosteric inhibitors are becoming 
increasingly valuable to achieve greater specificity. 
The specificity derived from interacting outside the 
ATP pocket has continued to spur the search for 
inhibitors of many kinases that bind to other pockets 
on kinase surfaces.104 Some inhibitors are currently 
being developed that block essential protein-protein 
interactions. 

Inhibitors of the ERK1/� pathway
Selective ERK1/2 inhibitors have only recently 
been described. One such inhibitor, FR180204, 
competes for the ATP-binding pocket of ERK2, with 
IC50 values of 0.14 and 0.31 µM for ERK2 and ERK1 
respectively.105 The utility of this compound is not 
yet certain. In the mid 1990’s the MEK1/2 inhibitors 
PD 98059 and U0126, used to interfere with the 

Figure 3 | JNK and ERK compounds
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ERK1/2 pathway, became available. PD 98059 
was found in an in vitro kinase activation assay, 
while U0126 was identified in a cell-based assay 
as an inhibitor of AP-1 transcriptional activity.106,107 

In contrast to the usual ATP site inhibitors, U0126 
and PD 98059 bind outside of the ATP binding site, 
selecting a low activity conformation and thereby 
keeping or shifting the protein to the inactive state. 
Due to their mode of binding, these drugs are 
among the most selective inhibitors available. The 
only other kinase affected by these drugs is the 
related MAP2K MEK5, which is inhibited at only 
slightly higher concentrations than MEK1/2.108 Both 
drugs are useful at low micromolar concentrations 
and inhibit activation of MEK1/2, but require higher 
concentrations to block already activated MEK1/2 in 
cells.109 Subsequently, a number of MEK1/2 inhibitors 
have been developed that are much more potent and 
have variable specificity relative to MEK5, including 
PD 198306 and PD 0325901.104,110 PD 0325901 
inhibits ERK1/2 activation in cells at concentrations 
as low as 25 nM, but fails to inhibit a large panel 
of other protein kinases at more than 100 times 
the concentration.111 ERK5 activation was inhibited 
at low micromolar concentrations, consistent with 
a ~10-fold greater potency towards MEK1/2 than 
MEK5. ARRY-142886 (AZD6244) is another potent, 
noncompetitive inhibitor of MEK1/2 with a reported 
IC50 of 14 nM against purified MEK1.112 

Another expanding array of compounds to block the 
ERK1/2 pathway is directed against Raf isoforms. 
B-Raf has been an attractive target particularly 
because a B-Raf mutant, V600E, is found in a large 
percentage of melanomas. The Raf inhibitors, overall, 
are less selective than MEK1/2-directed drugs and 
include GW 5074, ZM 336372, and BAY 43-9006 
(Sorafenib). BAY 43-9006 inhibits c-Raf and B-Raf 
with IC50 values in the nanomolar range, but also has 
significant activity towards several receptor tyrosine 
kinases.113 

Inhibitors of JNK pathways
SP 600125 is the most frequently used inhibitor 
of the JNK signaling pathway and blocks JNKs at 
concentrations in the range of 50-100 nM.114 SP 
600125 inhibits several other protein kinases with 
roughly equal potency.115 CEP-1347 (KT-7515) blocks 
the JNK pathway but is specifically an inhibitor of 
the upstream mixed lineage kinases (MLKs).116 
Thus, it will not block JNKs that are regulated in an 
MLK-independent manner.

Inhibitors of p38 signaling pathway
p38 inhibitors including SB 203580 have been 
developed using pyridinyl imidazoles as lead 
compounds.117 Crystallography showed that 
SB 203580 binds to the active site of p38, which 
prevents ATP binding.118 SB 203580 and several 

related compounds inhibit p38α and β, but not 
p38δ and γ.119 Structural studies of p38 identified a 
key feature of the ATP binding pocket that impacts 
inhibitor specificity. The threonine 106 residue 
of p38α and β is often larger than others, such as 
methionine or glutamine present in protein kinases 
such as p38δ and γ. This residue is called the 
gatekeeper.120 Enzymes with small gatekeeper 
residues can accommodate larger compounds in their 
ATP sites. As a consequence, Raf isoforms (due to 
their small gatekeeper side chains) can interact with 
p38 inhibitors, while p38δ and γ cannot.119 BIRB796, 
a diaryl urea compound, structurally unrelated to 
SB 203580, inhibits all four p38 isoforms by indirectly 
competing with the binding of ATP. BIRB796 
binding requires a large conformational change in 
a conserved catalytic loop (DFG motif) of p38. This 
remodeled structure is unable to bind ATP. 

Future prospects
At present we have an ample amount of information 
on components involved in the MAPK signaling 
pathway. Likewise, many substrates have been 
identified and mapped to functions in specific 
processes. Unfortunately, our understanding of 
these pathways is unilateral and often excludes 
feedback mechanisms, spatio-temporal aspects 
and context-specific signaling. Finally, uncovering 
how the MAPK pathway regulates, or is regulated 
by, newly discovered processes is an exciting task. 
Increasing amounts of evidence points to a role for 
MAPK in disease. p38 MAPK and JNK are potential 

Figure 4 | p38 MAPK compounds
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targets for drug development in neuronal disease 
as their inhibition may reduce the production of 
inflammatory cytokines known to be involved in 
a number of neural diseases such as cerebral 
ischemia, Alzheimer’s disease and Parkinson’s 
disease.121 Mutations in signaling components 
that activate ERK have been found in many forms 
of cancer. Specifically, mutations in K-Ras are 
prominent in colon and pancreatic cancer; N-Ras 

mutations occur in melanomas; H-Ras mutations in 
cervical and bladder cancer; while B-Raf mutations 
are found in over 65% of malignant melanomas.122,123 
The ERK signaling pathway is a main component 
in several steps of tumorigenesis including cancer 
cell proliferation, migration, invasion and survival. A 
deeper understanding of MAPK signaling pathways 
is required for the development of new therapeutic 
drugs for various disease states.
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