

ABEL[®]-RAC[™] Test Kit to be used with a variety of ABEL[®] Chemiluminescent Antioxidant Test Kits with Pholasin[®]

ABEL[®]-**RAC[™] TEST KITS**

TO BE USED WITH A VARIETY OF

ABEL® ANTIOXIDANT CHEMILUMINESCENT TEST KITS with PHOLASIN®

CONTENTS

Kit components sufficient for sample dilutions to produce four ABEL[®]-RAC mg determinations

A. 65 x 1.5mL microcentrifuge tubes

B. 5 x 15ml tubes

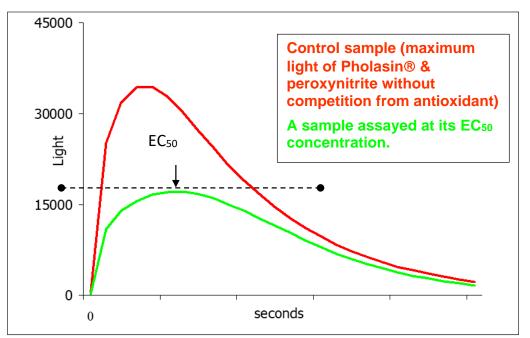
C. ABEL[®]-RAC[™] Analysis Template specific for each Reactive oxygen species (ROS)

WHAT IS ABEL®-RAC?

ABEL®-RAC^{TM 1} is a method to quantify the antioxidant activity or power of a mass (usually mg) of a finished product or the individual ingredients in the product against different reactive oxygen (ROS) challenges. The ABEL®-RACTM score is usually expressed as a unit of antioxidant activity per mg² of test material. It is a highly reproducible score, which is especially important when trying to re-produce batches of products made from natural ingredients.

Just recreating the formula is unlikely to lead to a new batch of product with the exact same or better efficacy even when using material from the same supplier in which the concentration of the active components are quoted as the same or higher. This is because the antioxidant **activity** of a material, that is how good the material is at neutralising different reactive oxygen species (ROS), is the result of a multitude of complex factors.

It is sometimes beneficial to obtain ABEL[®]-RAC[™] scores using a range of solvents in order to determine the activity of the water or oil soluble

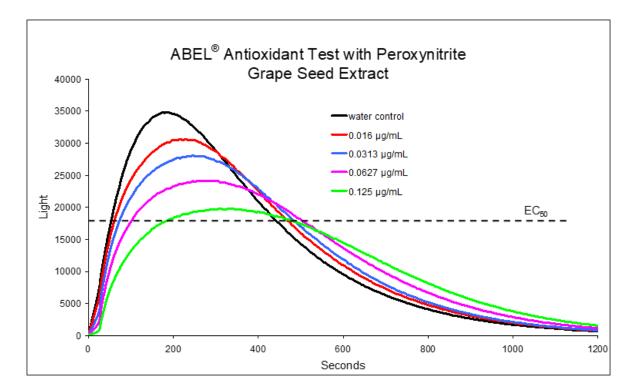

¹ Analysis By Emitted Light—Relative Antioxidant Capacity

² Other mg score can be converted into other ABEL-RAC units such as g or kg for example.

components in a natural material.

ABEL[®]-RAC and EC₅₀

ABEL[®]-RACTM is intimately linked to the value of the EC₅₀. The figure below shows a simplistic diagram illustrating the relationship between the control sample where 100% light is emitted from Pholasin[®] when challenged (in this case) with and the EC₅₀.

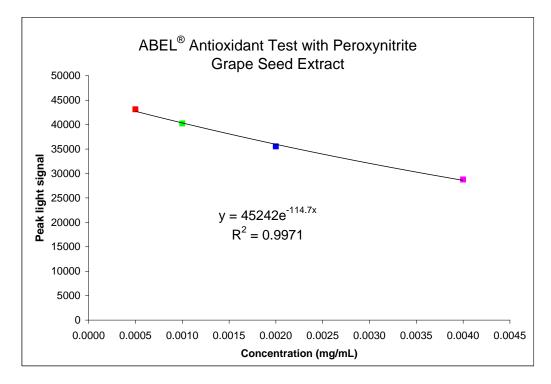

The EC₅₀ is the concentration of a material that has sufficient antioxidant capacity to compete with Pholasin® for a particular ROS enough to reduce the light of the Solvent Control by 50%. The EC₅₀ value (mg/mL) of a sample is calculated from the equation of a linear regression obtained from plotting the sample concentration (mg/mL) against peak light values taken from the light response curves. ABEL[®]-RACTM scores are calculated by multiplying the reciprocal of the EC₅₀ value by 100.

Generating the Data to Produce an ABEL-RAC[™] Score

To obtain an accurate measure of the EC_{50} a sample to be tested must first be diluted, sometimes by a number of orders of magnitude. The object of these dilutions is to obtain a range of concentrations that when measured in the assay result in maximum light values proportional to their concentration.

Access to a template, specific for each ABEL Antioxidant ROS assay, will be provided by a link to an Excel workbook with a pass word to open the Excel file specific for a particular ABEL[®] Antioxidant test. When peak light values for each concentration are put into a table in the template an instant calculation of the EC₅₀ and derived ABEL-RACTM mg score is obtained. You can then save and print the template. The template uses the linear regression equation.

A series of concentrations are measured, and the concentration leading to an approximate 50% reduction in emitted light is determined. This is used to create a further narrower range of concentrations, of which the maximum peak light (measured as relative light units (RLU)) for each concentration is used to create a linear regression of 3 - 4 points. We suggest 3 to 4 points as we aim to obtain at least 3 points that lie above the theoretical EC₅₀ value. By analysing this regression, the ABEL[®]-RAC score can be calculated.


Antioxidant Capacity Scores: EC₅₀ Values and ABEL-RAC[™] Scores

Separate light response curves are produced for a range of sample concentrations as well as a solvent control (see example above). The peak light values of each concentration are used in the calculation.

The EC_{50} of a material is related to its antioxidant capacity. The greater the amount of material required to reduce the light by half, the weaker the antioxidant capacity. Therefore, high EC_{50} values indicate low antioxidant capacity.

Calculating the EC50 using the KSL template

The EC₅₀ value (mg/mL or μ L/mL) of a sample is calculated from the equation of an exponential regression analysis obtained from plotting the sample concentration (mg/mL or μ L/mL) against peak light values taken from the light response curves (see below).

To obtain a reliable EC_{50} value, at least 3 sample concentrations are needed, which should produce a peak light signal of between 0% and 50% of the solvent control peak. At least one concentration's peak should be close to the no solvent control and another just above 50% of the solvent control peak. It is essential that you have at least 3 points producing a curve of nearly perfect linearity. This is necessary because the EC_{50} is a derived value of the concentration on the graph at which the regression curve crosses the actual 50% light value of the solvent control.

The following equation is generated from such an exponential regression:

$$y = Ae^{Bx}$$

This equation can be rearranged so that the EC_{50} in mg/mL or μ L/mL (x) may be calculated when y = 50% of the maximum light value of the solvent control:

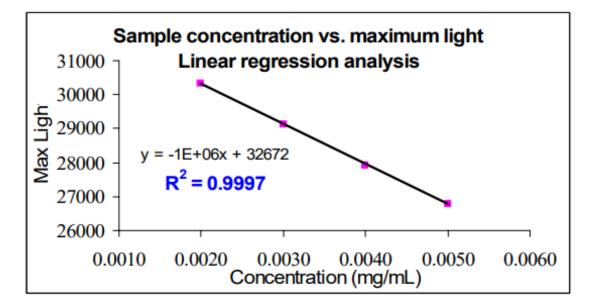
$$x = (ln(y/A))/B$$

(A & B are values returned from modelling the exponential curve)

Converting the EC₅₀ value of a sample to an ABEL-RAC score

To make the test results more readily understandable, the EC₅₀ values of samples are converted to a positive ABEL-RACTM score for each free radical or oxidant used to challenge the test material. ABEL-RACTM scores are calculated by multiplying the reciprocal of the EC₅₀ value by 100. Therefore, the higher the ABEL-RACTM score per mg or μ L, the higher the antioxidant capacity of the sample. This becomes a much easier value to understand. The higher the value the greater the antioxidant capacity.

ABEL-RAC[™] scores are adjusted to take into account any dilutions made of sample working concentrations when adding the sample to the assay mixture in cuvettes or microplate wells.


The above is performed in the template with all steps are shown on the template.

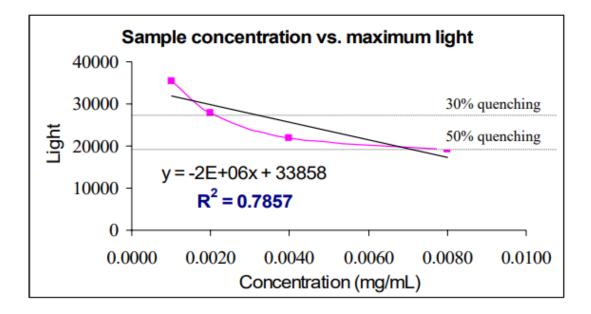
ABEL-RAC mg scores

ABEL®-RAC mg scores are the reciprocal of the EC₅₀ multiplied by 100 ($1/EC_{50} \times 100$). The higher the ABEL®-RAC mg score the higher the antioxidant capacity of the sample.

ABEL®-RAC scores are expressed per mg of dried material or μ L of a liquid for each of the ROS used to challenge the material. There will be different ABEL®-RAC scores for each ROS challenge used as the material under test is likely to contain molecules of greater or lesser affinity for particular ROS.

In order to calculate the theoretical EC_{50} of a sample a linear regression analysis is performed (automatically in the template) on the relationship between sample concentration (mg or μ L) and maximum light values, obtained from light response curves, of a range of sample concentrations (see below).

Some materials will be better antioxidants against some ROS than others. These scores can be used directly in formulations and can also be used to identify positive and negative synergies between more than one material. Also, carrying out antioxidant assays with the material to be tested dissolved in different solvents such as water, 100% alcohol and 50% alcohol will lead to the calculation of different ABEL®-RAC scores which will give an insight into the nature of the material being tested.


There are several important factors to be considered when using the **ABEL-RAC™ linear template:**

- 1. A narrow range of **3 4 sample concentrations** must be used in order for an accurate curve to be plotted automatically in the template.
- 2. The R² value for the linear regression curve must be ≥ 0.9900. In order that the test concentrations fall within a linear range we recommend that the strongest sample concentration used should result in no more than 25-30% light quenching. (Although as long as the relationship is still linear this is not mandatory). This is why we suggest 3-4 samples as sometimes only 3 samples above this cut-off point are available.

We have found that when the concentration of an antioxidant sample is increased beyond the level at which \sim 30% light quenching is achieved a saturation effect begins to take place in which increasing the antioxidant concentration appears to have diminishing returns with respect to antioxidant activity (i.e. reduction in the light signal).

Eventually a point is reached when no matter how much you increase the concentration of a sample you will not get any further quenching of light (i.e. when quenching = 100%). When this saturation effect occurs, the relationship between sample concentration and maximum light strays away from a linear model (see below) and the linear template cannot be applied (R^2 values will fall below 0.99).

The theoretical EC_{50} value used in the calculation is the point at which the linear regression curve crossed the 50% maximum light obtained from the No Sample Solvent Control.

INSTRUCTIONS FOR USING THE ABEL-RAC[™] LINEAR TEMPLATE

1. For a new sample with unknown antioxidant capacity, test a wide range of concentrations in the first assay by following the instructions bellow. When carrying out the assay, refer to your specific antioxidant kit instructions.

SAMPLE PREPARATION

A. Identify the correct solvent for your sample

1. Place a small amount of sample into a microcentrifuge tube, and add the solvent you wish to identify.

2. Repeat this with multiple solvents to ensure correct identification. Note the solvent that best dissolves the sample.

If testing oil, check the sample in 100% and 50% acetone.

B. Dissolve your sample in the appropriate solvent at a concentration of 10mg/mL.

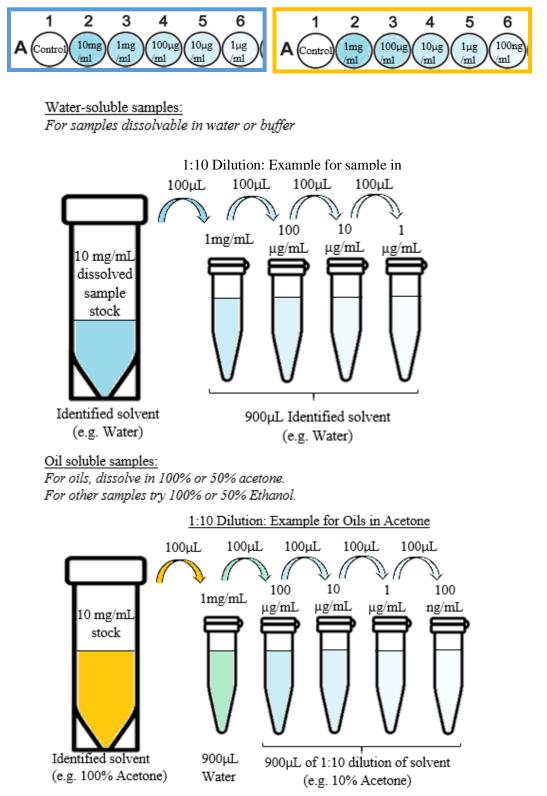
1. For solid and oil samples, weigh out a mass of the sample, and dilute to the above concentration with the appropriate solvent (e.g. 50mg of sample in 5mL of solvent).

2. For liquid samples with a mass similar to water, make the dilution with 10uL/mL (e.g. 50uL of sample in 5mL of solvent) *Ensure it has fully dissolved before use.*

C. Create a set of 1:10 dilutions.

1.You will need 5 dilutions to test the sample at different concentrations.

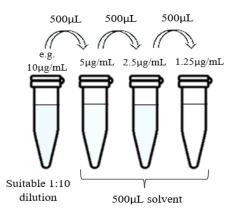
2.If your solvent is water/buffer, follow the `Water-soluble samples diagram on the following page.

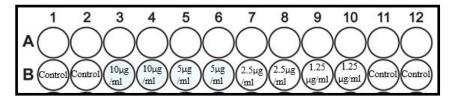

Then test the following concentrations: 10mg/mL, 1mg/mL, 100μg/mL, 10μg/mL, 1μg/mL.

3. If your solvent is ethanol or acetone, follow the 'Oil soluble

samples' diagram on the following page. Then test the following concentrations: 1mg/mL, 100µg/mL, 10µg/mL, 1µg/mL, 100ng/mL.

Ensure you carry out a solvent control, as many solvents (ethanol, acetone) have antioxidant properties.


Below is the recommended plate layout for both variations of dilutions:


- 2. Based on the results of the first test, estimate the approximate concentration which produces a 50% decrease in the light signal, compared to the solvent control. If required, re-test a couple of extra concentrations to check this.
- From the estimated concentration that causes ~50% reduction in light, make a narrow range of dilutions to be tested in the next assay. These concentrations should be tested using adjacent duplicates to obtain reliable results.

NARROW RANGE 1:2 DILUTIONS

Using the concentration identified as suitable by the previous 1:10 dilutions, create a series of further 1:2 dilations by diluting 500μ L of the concentration in 500μ L of solvent. Follow the figure on the right, using the example of 10μ g/mL as the starting concentration.

When using a microplate reader, we suggest that the following layout is used:

We recommended that each sample occupies one row with NSC or solvent controls at the beginning and the end.

Note: In some cases 'edge effects' on the microplate can cause a slight increase in the light signal in the outside wells (columns 1 & 12). When this occurs use the NSC maximum values in the wells of columns 2 & 11, corresponding to their respective rows.

4. When the assay has finished copy and paste the maximum light values for the concentrations tested, and the solvent controls, from the evaluation software into the ABEL-RAC[™] linear template spreadsheet and follow the instructions on the template to obtain your ABEL-RAC[™] score.

The image below shows an example of the results of a completed ABEL-RACTM template. You will be provided with a template specific to the antioxidant kit purchased.

© KNIGHT SCIENTIF	IC LIMITED,	PLYMO	итн, ик	2021						Data Input				
ABEL-RAC [™] templa	te using a L	INEAR I	regress	ion of 4 point	s	14/04/2021								
he EC ₅₀ is the conce	entration of	a materi	ial that	has sufficient	antioxid	ant activity to								
compete with Pholas	in® for a pa	articular	ROS en	ough to reduc	e the lia	ht of the								
The EC ₅₀ value (mg/n										Table to inc	ut da	ta		
regression obtained										Tuble to Imp	ut uu	cu i		
light values taken fro										Test Name: Ar	tioxida	ant Ha	logen	ated
					scores	are calculated	-			oxidants	icio Aide	and mo	logen	accu
by multiplying the rea	ciprocal of tr	Te EC50	value by	100.										
										Luminescence	_		-	
1. Copy and paste 'N														
data input table on t				ually insert the	values in					-		ncentra		Maximun
Sample		num Lig				Standard	_			Example data		/mL µg	g/mL	Light
mg/mL	repl1	repl2		% quenching		deviation 108				Control - Repl 1 Control - Repl 2		-+	_	954 936
Solvent control	9547	9367 9291	9405		1.1	100	-					-+	-	
0.1	9414 5416	9291 5475	5446	42	0.8	42				Control - Repl 3 Control - Repl 4		-	-	941
0.1		6879		26	1.7			Hiat		Dilution 1 - Rep		0.1	100	541
0.05		8217	8179	13	0.7	54		Concer		Dilution 1 - Rep			100	541
0.025		9156		4	2.0			1		Dilution 2 - Rep			50	704
0.0125	0302	3130	9029		2.0	100				Dilution 2 - Rep			50	687
2. Graph (plots 'Con	contrations	ma/ml '	ve 'May	imum Light')	The tren	dine equation					-	_		
				main Light).	ine delle	anne, equation				Dilution 3 - Rep			25	814
and R ² value are aut		splayed			-	1		. •		Dilution 3 - Rep	_		_	
The R ² value should	be ≥ 0.97							Low		Dilution 4 - Rep			12.5	890
Sample co	oncentration	vs. max	imum lie	aht		9264		Loncer	asaon	Dilution 4 - Rep	2 0.0	125 1	12.5	915
	near regress				Intercept						_		lata: In	and your
LI					Slope	-39675.13						~		sert your
10000 7	lear regress													
10000	ieal regress			75v + 0283 5										into the
8000		,	y = -3967	75x + 9263.5								h		into the ited cells.
8000			y = -3967	75x + 9263.5 0.9724								h		
8000			y = -3967									h		
10000 5 8000			y = -3967									h		
10000 8000 6000 4000			y = -3967						We	succest you start b	v copvin		ighligh	ted cells.
8000			y = -3967							suggest you start b		g your n	ighligh naximun	n light value
10000 8000 - 4000 - 2000 -			y = -3967						for	each dilution in the v	vorking t	g your n able bel	naximun ow. You	n light valu
10000 100000 100000 10000 10000 10000 10000 10000 10000 10000	-		y = -3967 R ² =	0.9724					for		vorking t es into th	g your n able bek	naximun ow. You highligh	n light valu u can then hted area o
10000 8000 - 4000 - 2000 -	0.04	0.06 0	y = -3967 R ² =						for cop the	each dilution in the voy the individual value	vorking t es into th sume you	g your n able belo ne green u will be	naximun ow. You highligh making	n light value u can then hted area o your
10000 1000 100	0.04 (Concentra	0.06 0	y = -3967 R ² =	0.9724					for cop the dilu	each dilution in the v by the individual valu table above. We as	vorking t es into th sume you L not mg	g your n able bek ne green u will be p/mL. All	naximun ow. You highligh making you neu	n light valu u can then hted area o your ed to do
10000 100000 100000 10000 10000 10000 10000 10000 10000 10000	0.04 (Concentra ate).06 0	y = -3967 R ² = .0.08 /mL)	0.9724					for cop the dilu the the	each dilution in the w by the individual valu table above. We as tions in units of µg/m n is put the µg/mL va values will automati	vorking t es into th sume you L not mg lues in th	g your n able belo green u will be y/mL. All he appro	ighligh naximun ow. You highligh making you neo opriate s	n light valu u can then hted area o your ed to do spaces as
10000 100000 100000 10000 10000 10000 10000 10000 10000 10000	0.04 (Concentra ate).06 0	y = -3967 R ² = .0.08 /mL)	0.9724					for cop the dilu the the	each dilution in the v by the individual valu table above. We as- tions in units of µg/m n is put the µg/mL va- values will automati- ten highlighted area.	vorking t es into the sume you aL not mg lues in the cally be o	g your n able bek e green u will be /mL. All he appro converte	ighligh naximun ow. You highligh making you ner opriate s ed to mg	n light valu u can then hted area of your ed to do spaces as //mL in the
10000 5 000 5 000 2000 0 0 0.02 3. Evaluation templa This evaluation templa	0.04 (Concentra ate late is used).06 0 ition (mg/	y = -3967 R ² =).08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the gre	each dilution in the v by the individual valu table above. We as tions in units of µg/n n is put the µg/mL va values will automati en highlighted area.	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then hted area of your ed to do spaces as y/mL in the aximum
3. Evaluation templa This evaluation templa pample. Input values	0.04 (Concentra ate late is used	.06 0 tition (mg/ to calcu	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the gre E	each dilution in the v sy the individual valu table above. We as tions in units of µg/m n is put the µg/mL va values will automati en highlighted area. xample data 2	vorking t es into the sume you aL not mg lues in the cally be o	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then hted area o your ed to do spaces as y/mL in the aximum Light
10000 5 6000 2000 0 0 0.02 3. Evaluation templa This evaluation templa Sample. Input values Assay	0.04 (Concentra ate late is used	.06 0 tition (mg/ to calcu	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the <u>gre</u> E	each dilution in the v by the individual value table above. We ass- tions in units of µg/m. n is put the µg/mL va- values will automati- en highlighted area. xample data 2 introl - Repl 1	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then thed area of your ed to do spaces as y/mL in the aximum Light 954
3. Evaluation templa This evaluation templa ample. Input values Assay Sample ID	0.04 (Concentra ate late is used	.06 0 tition (mg/ to calcu	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the <u>gre</u> Co Co	each dilution in the v yy the individual valu table above. We as tions in units of µg/n n is put the µg/mL vy values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then thed area of your ed to do spaces as y/mL in the aximum Light 954 936
3. Evaluation templa This evaluation templa This evaluation templa Sample ID Batch No.	0.04 (Concentra ate late is used	.06 0 tition (mg/ to calcu	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the <u>gre</u> Co Co	each dilution in the v yy the individual valu table above. We as tions in units of µg/m n is put the µg/mL v values will automati en highlighted area. xample data 2 introl - Repl 1 ntrol - Repl 3	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then hted area o your ed to do spaces as y/mL in the aximum Light 936 934
10000 5 6000 2000 0 0 2000 0 0 2000 0 0 0	0.04 (Concentra ate shighlighted halogenated	0.06 0 ttion (mg/ to calcu l in the t	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the <u>gre</u> Co Co	each dilution in the v yy the individual valu table above. We as tions in units of µg/n n is put the µg/mL vy values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able beli de green u will be y/mL. All he appro converte	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then thed area of your ed to do spaces as y/mL in the aximum Light 954 936
3. Evaluation templa This evaluation templa This evaluation templa Sample ID Batch No.	0.04 (Concentra ate late is used highlighted halogenated water	.06 0 tition (mg/ to calcu	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of		Highest	for cop the dilu the the <u>gre</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u>	each dilution in the v yy the individual valu table above. We as tions in units of µg/m n is put the µg/mL v values will automati en highlighted area. xample data 2 introl - Repl 1 ntrol - Repl 3	vorking t es into the sume you aL not mg lues in the cally be of Concern	g your n able bek le green u will be /mL. All he appro converte tration µg/mL	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light valu u can then hted area o your ed to do spaces as y/mL in the aximum Light 936 941
10000 5 000 5 000 2000 0 0 0 0 0 0 0 0 0 0 0 0	0.04 (Concentra ate late is used halogenated water 9547	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of		Highest	for cop the dilu the the <u>gre</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u>	each dilution in the v yy the individual valu table above. We as tions in units of µg/m n is put the µg/mL v values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 3 ntrol - Repl 4	vorking t es into th sume you iL not mg ilues in th cally be o Concern mg/mL	g your n able bek le green u will be /mL. All he appro converte tration µg/mL	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light valu u can then hted area of your ed to do spaces as y/mL in the aximum Light 936 941 929
10000 5 0000 5 0000 2000 2000 0 0 0.02 3. Evaluation templation this evaluation templation Sample. Input values Assay Sample ID Batch No. Solvent control Solvent control Mean	0.04 (Concentra ate late is used halogenated water 9547 9414	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3967 R ² = .0.08 (mL)	0.9724	AC™ scol	re per mg of			for cop the dilu the the <u>gre</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u> <u>Co</u>	each dilution in the v yy the individual valu table above. We as tions in units of µg/n n is put the µg/mL vy values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 3 ntrol - Repl 4 ution 1 - Repl 1	vorking t es into th sume you L not mg lues in th cally be o Concer mg/mL 0.1	g your n able bek green y will be y/mL. All he appro- converte stration µg/mL 100	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light value u can then ted area or your ed to do spaces as y/mL in the aximum Light 954 936 941 925 541 547
10000 100000 100000 100000 10000 10000 10000 10000 10000 100000	0.04 (Concentra ate late is used highlighted halogenated water 9547 9414 9405 108	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 (mL)	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total			for cop the dilu the the gre Co Co Co Co Co Co Co Co Co Co Co Co Co	each dilution in the v yy the individual valu table above. We as tions in units of µg/m n is put the µg/mL v values will automati en highlighted area. xample data 2 introl - Repl 1 introl - Repl 2 introl - Repl 3 introl - Repl 3 introl - Repl 4 ution 1 - Repl 1 ution 1 - Repl 2 ution 1 - Repl 2	vorking t es into th sume you il not mg ilues in ti cally be o Concer mg/mL 0.1 0.1	g your n able bek green y will be y/mL. All he appro- converte tration µg/mL 100 100	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light valu u can then hted area of your ed to do apaces as /mL in the aximum Light 933 941 922 541 547 704
10000 5000	0.04 (Concentra ate late is used halogenated halogenated water 9547 9414 9405 108 1.14	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = 0.08 (mL) s cV of s	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scon mple siz	e per mg of e and total			for cop the dilu the the gre Co Co Co Co Co Co Co Co Co Co Co Co Co	each dilution in the ' by the individual valu table above. We as tions in units of µg/mL va values will automati en highlighted area. xample data 2 introl - Repl 1 introl - Repl 2 introl - Repl 3 introl - Repl 4 ution 1 - Repl 2	vorking t es into th sume you iL not mg lues in ti cally be o <u>Concer</u> mg/mL 0.1 0.1	g your n able below is green y will be ymL. All he appro- converte tration µg/mL 100 100 50	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light valu u can then ted area of your ed to do spaces as y/mL in the aximum Light 954 933 941 925 541 547 704 687
10000 100000 100000 10000 10000 10000 10000 10000 10000 10000	0.04 (Concentra ate late is used halogenated halogenated water 9547 9414 9405 108 1.14	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = 0.08 (mL) s cV of s	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scon mple siz	e per mg of e and total			for cop the dilu the the gre Co Co Co Co Co Co Co Co Co Co Co Co Co	each dilution in the by the individual valu table above. We as tions in units of µg/m n is put the µg/mL vi values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 3 ntrol - Repl 3 ntrol - Repl 4 ution 1 - Repl 1 ution 1 - Repl 2 ution 2 - Repl 1 ution 2 - Repl 2	vorking t es into the sume you aL not mg ilues in the cally be of Concern mg/mL 0.1 0.1 0.05 0.05	g your n able belo e green u will be ymL. All he appro- converte tration µg/mL 100 100 50 50	ighligh naximun ow. You highligh you ner opriate s ed to mg	n light valu u can then hted area of your ed to do spaces as ymL in the aximum Light 933 943 943 944 935 945 945 945 945 945 945 945 945 945 94
10000 100000 100000 100000 10000 10000 10000 10000 10000 100000	0.04 (Concentra ate late is used highlighted halogenated water 9547 9414 9405 108 1.14 4702.375	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Cor		for cop the dilu the gre Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil	each dilution in the v yy the individual valu table above. We as- tions in units of µg/m n is put the µg/mL v values will automati- en highlighted area. xample data 2 mtrol - Repl 1 mtrol - Repl 2 mtrol - Repl 3 mtrol - Repl 3 mtrol - Repl 4 ution 1 - Repl 1 ution 1 - Repl 1 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 2	vorking t es into th sume you aL not mg ilues in th cally be o Concen mg/mL 0.1 0.1 0.05 0.055 0.025	g your n able below in the green u will be ymL. All the appro- converte tration µg/ml 100 100 50 50 25	ighligh naximun ow. Yor highligt making you ne sopriate so d to mg d to mg d to mg	n light valu u can ther hted area your ed to do spaces as your mL in the aximum <u>95:</u> 93: 94: 94: 94: 94: 94: 94: 94: 94: 94: 81: 81: 81: 81: 81: 81: 81: 81: 81: 81
10000 100000 100000 100000 10000 10000 10000 10000 10000 100000	0.04 (Concentra ate late is used halogenated halogenated water 9547 9414 9405 108 1.14	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Col		for cop the dilu the gre Co Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil Dil	each dilution in the v yy the individual valu table above. We as- tions in units of µg/m n is put the µg/mL v values will automati- en highlighted area. xample data 2 mtrol - Repl 1 mtrol - Repl 2 mtrol - Repl 3 mtrol - Repl 3 mtrol - Repl 4 ution 1 - Repl 1 ution 1 - Repl 1 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 2	vorking t es into the sume you aL not mg ilues in the cally be of Concer mg/mL 0.11 0.05 0.025 0.025 0.025 0.025	g your m able bel ymL. All he appro- converte tration 100 100 50 50 25 25 12.5	naximun ow. Yoi highligh making you nee oppriate s do mg Ma	n light valu u can then thed area your ed to do spaces as y/mL in the aximum Light 936 941 925 541 704 683 811 821 889
10000 5000	0.04 (Concentra late is used halogenated h	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Col	Lowest	for cop the dilu the gre Co Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil Dil	each dilution in the by the individual valu table above. We as tions in units of <i>yg/n</i> , n is put the <i>yg/mL</i> values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2 ntrol - Repl 2 ntrol - Repl 2 ution 1 - Repl 2 ution 1 - Repl 2 ution 2 - Repl 1 ution 1 - Repl 2 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 2 ution 5 - Repl 1 ution 5 -	vorking t es into the sume you aL not mg ilues in the cally be of Concer mg/mL 0.11 0.05 0.025 0.025 0.025 0.025	g your m able bel ymL. All he appro- converte tration 100 100 50 50 25 25 12.5	naximun ow. Yoi highligh making you nee oppriate s do mg Ma	n light valu u can then thed area of your ed to do spaces as ymL in the aximum Light 935 941 925 541 547 704 683 814 821 880
10000 5 000 5 000 2000 0 0 0 0 0 0 0 0 0 0 0 0	0.04 (Concentra ate late is used highlighted halogenated halogenated water 9547 9414 9405 108 1.14 4702.375 0.1149624	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Col	Lowest	for cop the dilu the gre Co Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil Dil	each dilution in the by the individual valu table above. We as tions in units of <i>yg/n</i> , n is put the <i>yg/mL</i> values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2 ntrol - Repl 2 ntrol - Repl 2 ution 1 - Repl 2 ution 1 - Repl 2 ution 2 - Repl 1 ution 1 - Repl 2 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 2 ution 5 - Repl 1 ution 5 -	vorking t es into the sume you aL not mg ilues in the cally be of Concer mg/mL 0.11 0.05 0.025 0.025 0.025 0.025	g your m able bel ymL. All he appro- converte tration 100 100 50 50 25 25 12.5	naximun ow. Yoi highligh making you nee oppriate s do mg Ma	n light valu u can then thed area of your ed to do spaces as ymL in the aximum Light 936 941 929 541 547 704 687 814 821 890
10000 5 000 5 000 2000 0 0 2000 0 0 0	0.04 (Concentra ate late is used halogenated halogenated water 9547 9414 9405 108 1.14 4702.375 0.1149624	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Col	Lowest	for cop the dilu the gre Co Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil Dil	each dilution in the by the individual valu table above. We as tions in units of <i>yg/n</i> , n is put the <i>yg/mL</i> values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2 ntrol - Repl 2 ntrol - Repl 2 ution 1 - Repl 2 ution 1 - Repl 2 ution 2 - Repl 1 ution 1 - Repl 2 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 2 ution 5 - Repl 1 ution 5 -	vorking t es into the sume you aL not mg ilues in the cally be of Concer mg/mL 0.11 0.05 0.025 0.025 0.025 0.025	g your m able bel ymL. All he appro- converte tration 100 100 50 50 25 25 12.5	naximun ow. Yoi highligh making you nee oppriate s do mg Ma	n light valu u can then hted area o your ed to do spaces as y/mL in the aximum Light 954 936 941 925 541
3. Evaluation templa This evaluation templa This evaluation templa Sample ID Batch No. Solvent	0.04 (C Concentra late is used halogenated halogenated halogenated 108 108 1.14 4702.375 0.1149624	0.06 0 ition (mg/ to calcu in the t oxidants 9367	y = -3907 R ² = .0.08 /mL) late the cable be s * This is	0.9724 0.1 0.12 e final ABEL-RA low for the sa	AC™ scor mple siz	e per mg of e and total	Col	Lowest	for cop the dilu the gre Co Co Co Co Co Co Co Dil Dil Dil Dil Dil Dil Dil	each dilution in the by the individual valu table above. We as tions in units of <i>yg/n</i> , n is put the <i>yg/mL</i> values will automati en highlighted area. xample data 2 ntrol - Repl 1 ntrol - Repl 2 ntrol - Repl 2 ntrol - Repl 2 ution 1 - Repl 2 ution 1 - Repl 2 ution 2 - Repl 1 ution 1 - Repl 2 ution 2 - Repl 1 ution 2 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 3 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 5 - Repl 1 ution 4 - Repl 1 ution 5 - Repl 2 ution 5 - Repl 1 ution 5 -	vorking t es into the sume you aL not mg ilues in the cally be of Concer mg/mL 0.11 0.05 0.025 0.025 0.025 0.025	g your m able bel ymL. All he appro- converte tration 100 100 50 50 25 25 12.5	naximun ow. Yoi highligh making you nee oppriate s do mg Ma	n light valu u can then thed area of your ed to do spaces as ymL in the aximum Light 936 941 929 541 547 704 687 814 821 890

For further help and advice, please contact telephone or e-mail:

Dr Jan Knight

Knight Scientific Limited, 15 Wolseley Close Business Park, Plymouth, PL2 3BY, UK telephone: +44 (0)1752 565676 e-mail: info@knightscientific.com www.knightscientific.com

Document was written by Jan Knight, Grace Millen and Scott Webster

©Knight Scientific Limited, March 2021 Pholasin[®] and ABEL[®] (Analysis By Emitted Light) are registered trademarks of Knight Scientific Limited.

