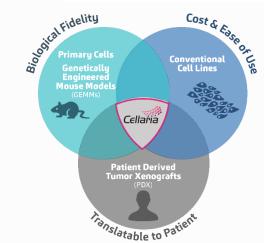

Cellaria and the New Promise for Research

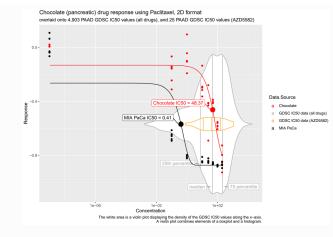
Cellaria


The Cellaria Advantage

- Cellaria provides next-generation, patient-specific disease models that solve many of the issues of traditional cell line development
- Proprietary formulations used during derivation increase the success rate from <15% to >95% for establishing stable, scalable, and heterogeneous cell populations
- Cellaria's technology enables the creation of a broad range of patient cell types, and consequently more thorough investigation of patient response
 - Cheaper than genetically engineered cell models and avoids the cost and variability associated with tests conducted in animal models
 - Enables creation of cell models for diseases where researchers previously had limited success (i.e. pancreatic cancer, liver disease)
- Each cell model is characterized using well-controlled, characterization assays to ensure stable biomarker expression while enabling easy tracing with highly detailed lineage and clinical data
- Cellaria's cell lines are highly stable (durable and consistent), especially when compared to many existing cell lines which have changed over the years
- Cellaria's patient cohorts offer a broad sampling of key population segments that provide unprecedented insight for disease and treatment investigators

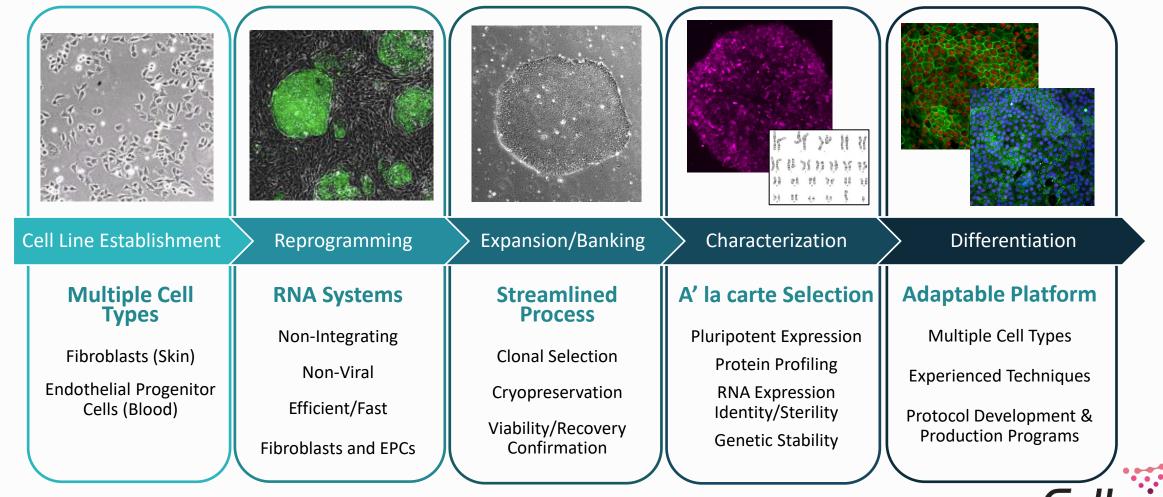
- Sample Cellaria Cell Line Growth -

Cellaria's cell lines outperform conventionally developed cell lines across all selection criteria

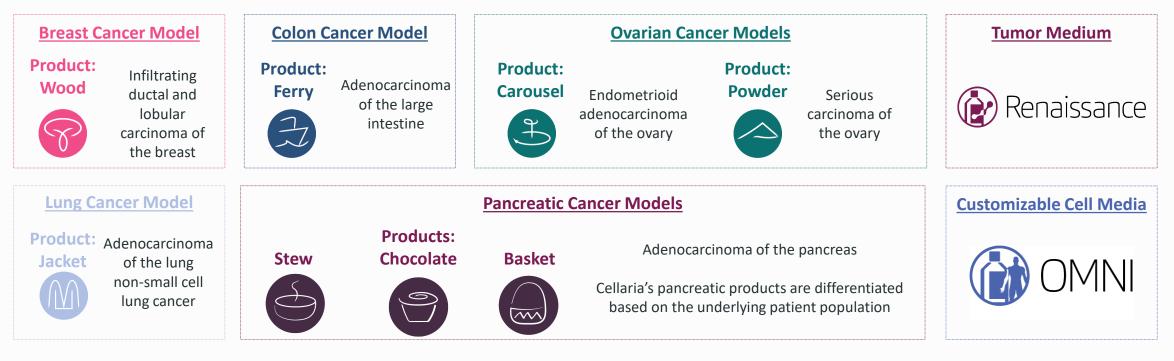

Broader Applications than Traditional Cell Lines

Traditional Uses of Cell Lines

- Response screening of compound libraries to find therapeutic candidates
- Therapeutic evaluation by measuring the sensitivity of different cell lines (representing different patient populations) to therapeutic candidates
- Analysis of the relationship between disease response and genome characteristics
- Disease mechanism analysis to evaluate mechanisms of action in disease development and progression, often using complex assays formats such as spheroid
- Quality control to ensure production processes do not alter performance characteristics of the drug


Expanded Uses of Cellaria's Products

- Target identification by creating model systems that better represent the true patient population
- Therapeutic response analysis enabling exploration of variations among similar patient populations
- Metastatic progression using co-culture assays to investigate mechanism of metastasis
- Direct clinical models to analyze the exact patients enrolled in clinical trials
- Cellaria's Cell Line Outperforms Standard


Cellaria Custom Model Services

- Customers rely on Cellaria to develop the model, perform certain elements of characterization and perform preliminary drug screening
- Modular and milestone driven services, allowing customers to select the project components that fit best with their needs

Cellaria's Commercial Products

- Cellaria provides a broad range of disease media and models that encompass historically challenging disease areas
- Increasing demand for well-controlled characterization assays: gene expression, protein profiling, and mutation identification
- Planned new product launches include models for triple negative breast cancer, cholangiocarcinoma, serous ovarian cancer, and non-small cell lung cancer
- All in-house manufacturing with process development underway to increase the company's lot size from 100 to 500 vials per lot

Cellaria's Commercial Assays

3D Spheroid and 3D Co-Culture (MINT[™] Assay)

 Characterization of disease progression and response to drug candidates in standard spheroid, and co-culture environments that mimic the tumor microenvironment and the metastatic niche.

Drug Response

 Using standard techniques, including XTT, CellTiterGlo, Cyquant, CellToxGreen, to evaluate drug candidates and determine drug response of various patient cohorts, and comparisons to clinically approved drugs for the disease of interest.

Migration, Growth and Kinetic Assays

 Using various luminescent and fluorescent imaging techniques, general characteristics of growth, cell migration and calcium mobilization are measured.

Flow Cytometry Analysis and IHC

• Standard flow cytometric and IHC assays for multiplex cell surface marker identification, apoptosis, and cell cycle analysis.

Identity (Cell Line Authentication)

 STR-analysis for at least 10 microsatellite loci including sex determination, report to include details of results, any evidence of contamination with other cell lines, match to original cell line (if iPSC and provided by customer) and information if sample matched to repositories (ATCC, NIH).

Custom Differentiation

Custom differentiation protocol optimized for specific cell types

Trilineage Differentiation

- Differentiation towards all three lineages using the STEMDiff[™] Trilineage Differentiation Kit (7 days ectoderm, 5 days Mesoderm and Endoderm), flow cytometry analysis of at least 10,000 events, report percent positive for lineage specific markers (below), raw FCS data to be supplied for troubleshooting/reanalysis.
- Ectoderm PAX6 and Nestin
- Mesoderm Brachyury and CXCR4
- Endoderm SOX17 and FOXA2

Karyotype

Analysis of at least 20 metaphase spreads by accredited cytogeneticist, comprehensive report outlining findings, resolution, number of cells counted, analyzed and karyogrammed.

SNP Array

Analysis of sample for any abnormalities not detected by g-banding, interpretation by accredited cytogeneticist, comprehensive report outlining findings, specifications and limitations.

Sequencing/ Gene Expression

 Whole Exome Sequencing or Whole Genome Sequencing. Gene expression determination using the NanoString platform

Undifferentiated Marker Expression

Flow cytometry analysis of up to 7 markers (e.g. Oct4, Nanog, Sox2, TRA-1-60, TRA-1-81, SSEA3 and SSEA4). At least 10,000 events, report percent positive for each marker, raw FCS data to be supplied for troubleshooting/reanalysis.

Cellaria's Methods of Engagement with Customers

- Standard commercial transaction for Cellaria's Patient Specific Cell Models, Cell Culture Media and/or any combination of services
- Prospective patient enrollment, using customer defined criteria, for the development of patient cohorts used for in vitro assays
- 2D, 3D and 3D co-culture drug screening
- Off the Shelf Proteomic services
- Genomic and/or Proteomic Dataset generation

Cellaria's Disease Models

Expanding Patient Cohorts for Pancreatic Cancer and Other Disease Categories

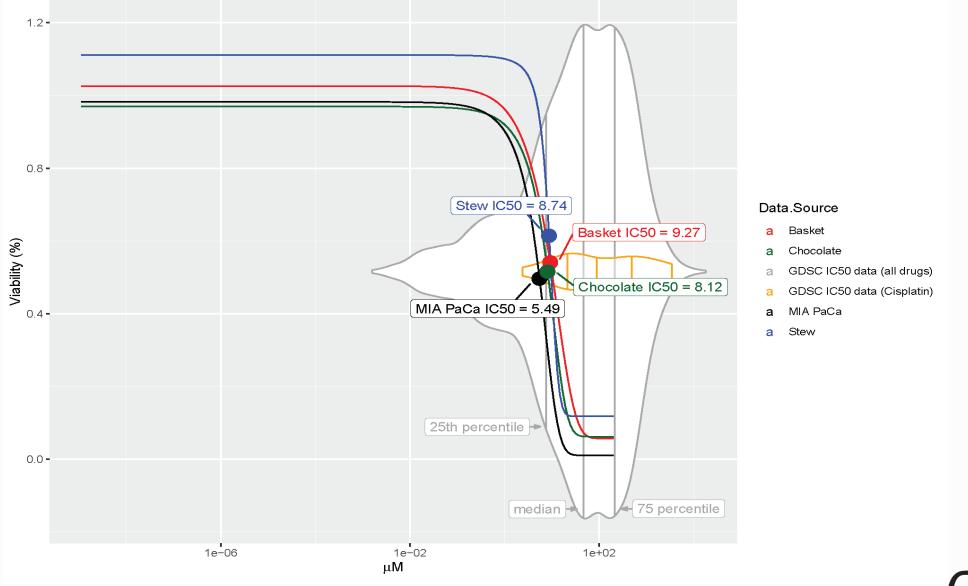
Cell Line	Diagnosis	TNM Stage	Stage Group	Clinical Info	Co-Indications
Basket	Invasive, moderately differentiated ductal adenocarcinoma of the pancreatic head.	T3N1Mx	G2	70-75-year-old Caucasian Female	Jaundice, Osteoporosis, Anxiety, Arthritis
Chocolate	Ductal type, poorly differentiated adenocarcinoma of the pancreatic head	T3N0Mx	N/A	50-55-year-old Caucasian Female	Diabetes Mellitus, Jaundice, Biliary stricture
Stew	Invasive moderately differentiated adenocarcinoma of the pancreatic head	T3N1M0	G2	65-70-year-old Caucasian Male	Diabetes Mellitus, Congestive Heart Failure, COPD, Emphysema, Arthritis

Cellaria's Disease Catalogue (NSCLC)

Model Name	M/F	Age	Mutational Analysis (Whole Genome/Exome)	Clinical Diagnosis	H&E Image	H&E Report (CD: Consistent with Diagnosis? C%: % Tumor, N%: % Necrotic, T%: % TIL)
Bastion	F	70-75	No Mutations	Squamous cell carcinoma		<u>CD:Y</u> , C%:5, N%:0, T%:n
Boulder	м	65-70	63%APC, 62%SMARCA4, 54%ATM(T-A), 43%ATM(Y-H), 37%TP53, 35%PTPN11, 33%CDKN2A(R- Q), 29%CDKN2A(L-S), 16%SMO, 9%TSC1	Squamous cell carcinoma		<u>CD:N</u> , C%:0, T%:NA
Jacket	м	70-75	100%AR, 100%KRAS, 100%TP53, 62%MUTYH, 32%MSH6	Adeno- carcinoma of the lung		
Pincer	F	65-70	75%PBRM1, 70%BMPR1A, 47%TP53, 12%SMO, 8%KDR (VEGFR2), 7%RAF1	Adeno- carcinoma, invasive		<u>CD:Y</u> , C%:40, N%:0, T%:<5

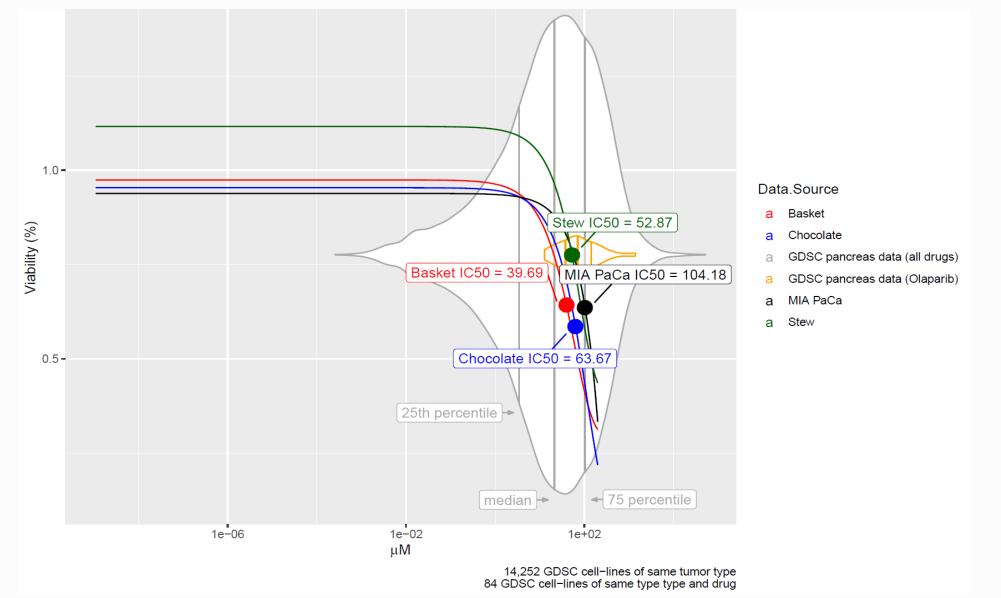
Cellaria's Patient Enrollment Priorities (Example)

Enrolling – Breast Cancer

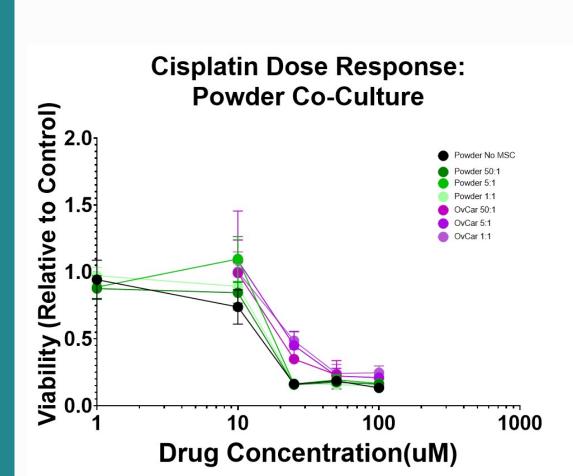

Cell Code	Diagnosis	ER/PR	Her2	Other Drugs
	Her2+ Recurrent,		pos	Tam
	post-treatment			
	Her2- Recurrent,		neg	Olaparib
	post-treatment			
	ER+/PR+/Her2-	pos/pos		
	Low Ki67			
	ER+/PR+/Her2-	pos/pos	pos	
	High Ki67			
	ER-/PR-/Her2-	neg/neg	neg	

Enrolling – Ovarian Cancer

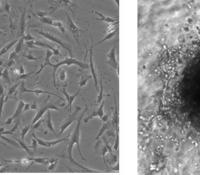
Cell Code	Diagnosis	Condition	Her2	Other Drugs
	Her2+ High	Initial	pos	
	Grade Serous	Diagnosis		
	High Grade	Adjuvant		
	Serous	Chemo		

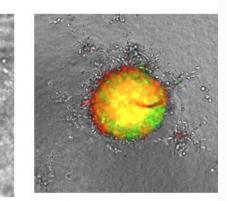


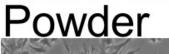
Drug Response: Cisplatin with PanCa 2D

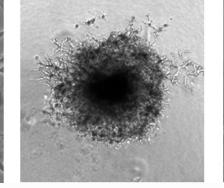


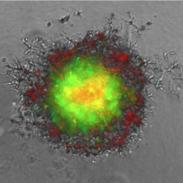
Drug Response: Olaparib with PanCa 2D

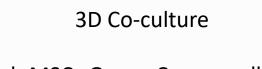



Cellaria


Carousel and Powder Ovarian Cancer tumor metastatic model with MSCs co-culture

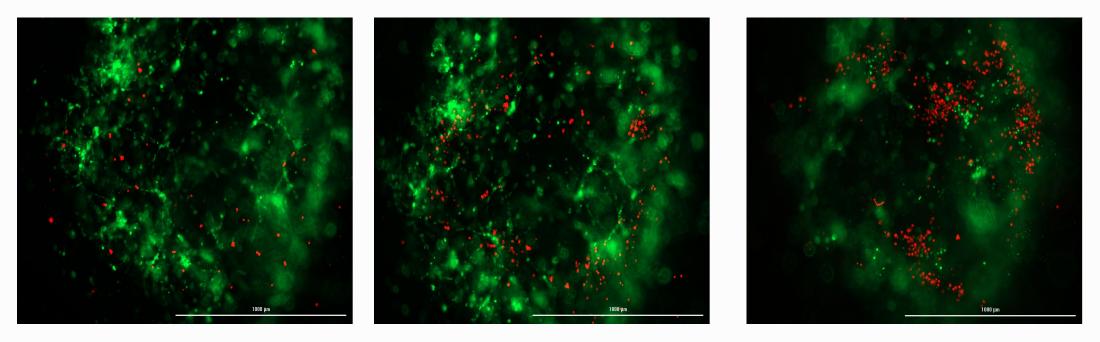

Carousel





2D

Red -MSCs Green-Cancer cells

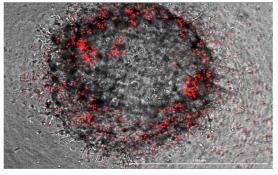

13

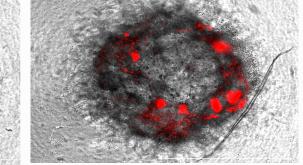
Cellaria's MINT[™] Assay (Model of the Immune Niche of Tumors): 3D Co-Culture to Model TME in the presence of T cells

- → Utilize repeatable workflow of 3D Co-Culture format to profile T-cell clones within the microenvironment
- Compare performance of patient-matched T-cells to unrelated T-cell donor
- Optimize and standardize flow cytometric characterization of T –cell populations in patient samples and co-culture models
- → Evaluate/optimize model performance for the PD-1 pathway and targeting efficacy of CAR-T therapies

Cellaria's 3D Co-Culture Assay (Basket_PanCa 3D with Activated T cells)

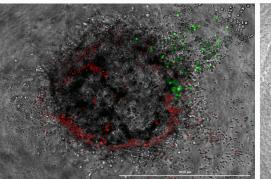
Time 19 hrs (8:30 AM 9/3/21)

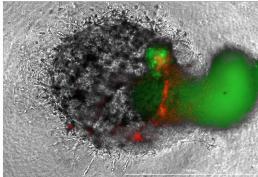

Time 0 (11:30 AM 9/2/21)

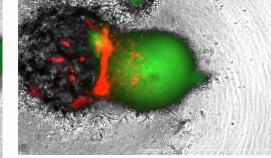

Time 2 hrs (1:30 AM 9/2/21)

Activated T-cells quickly migrate toward tumor spheroids


Cellaria's 3D Co-Culture Assay (Basket_PanCa 3D with Activated T cells)


Time 0 hours 9-24 3PM


Time 21 hours 9-25 10AM

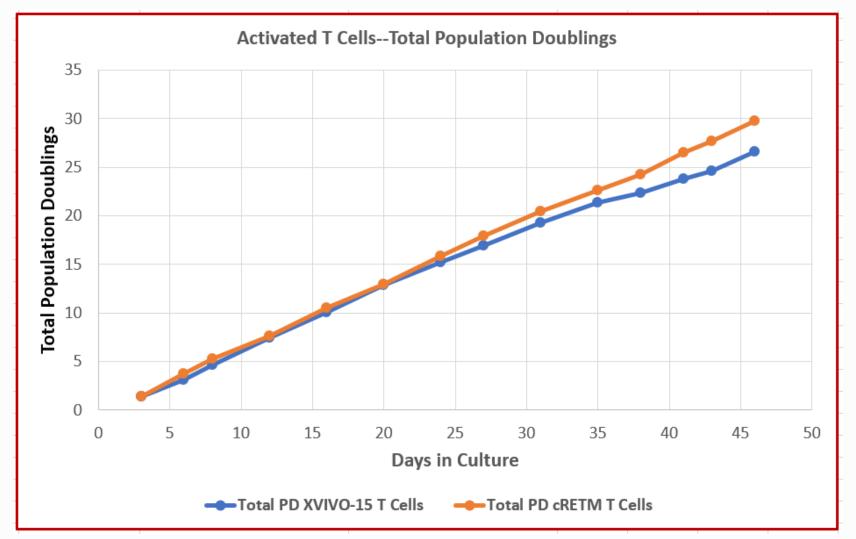


Red – T Cells Green – MSCs

 Activated T-cells infiltrate the pancreatic spheroid and migrate within the spheroid

Time 0 hours 9-24 3PM

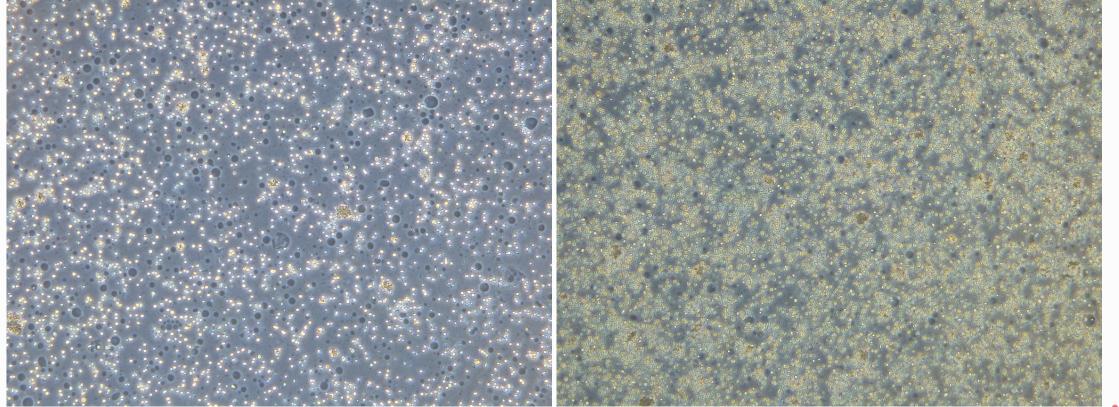
Time 21 hours 9-25 10AM


Time 44 hours 9-26 9AM

 The addition of mesenchymal stem cells (MSC) at the same time as activated T-cells highlights effects of T-cell migration within pancreatic cancer spheroids

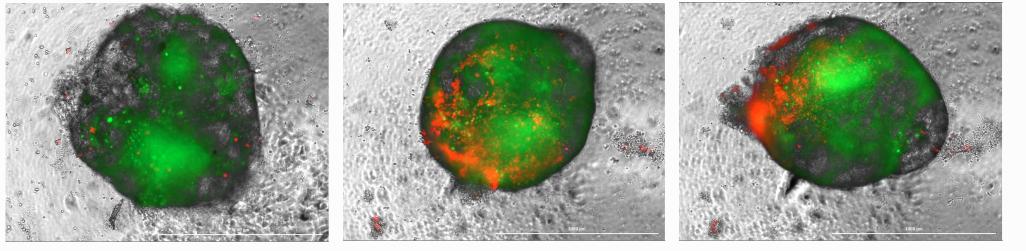
T-Cell Growth Curve

46 Days, 16 Passages

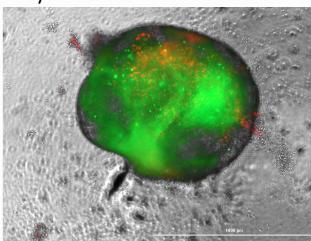


T Cell Activation In-Vitro

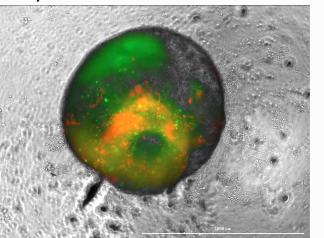
Renaissance Media (5x images): Doubling Time 37 hours


20Sep: 1Million Cells Seeded

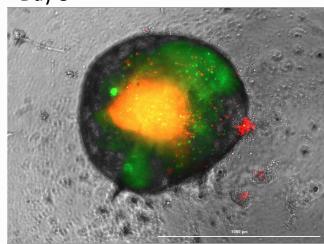
24Sep: 5.9Million Cells Harvested

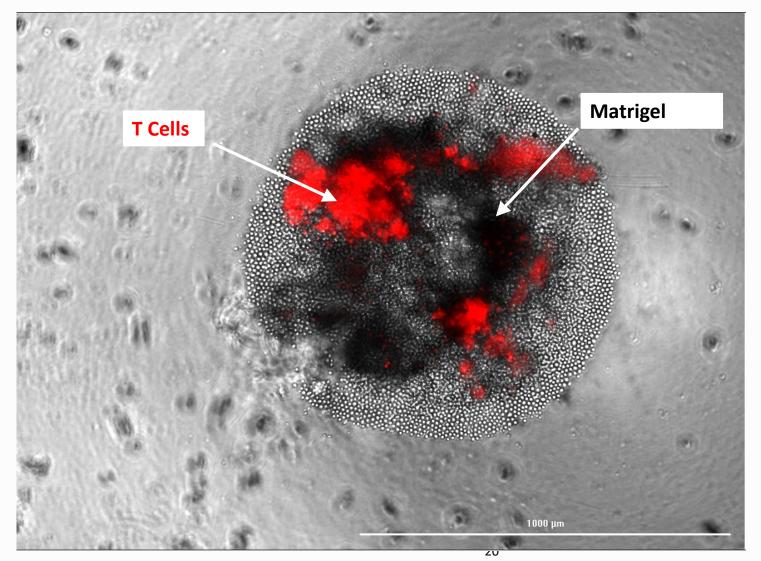


Cellaria's 3D Co-Culture Assay (Chocolate_PanCa 3D with Activated T cells)



Red – T Cells Green – MSCs




Day 13

19

Cellaria's 3D Co-Culture Assay (Chocolate_PanCa 3D with Activated T cells)

Cellaria

Your Navigator for Smarter Search