

Reagents Needed

Component	Vendor	Catalog #
Calbryte™ 520 AM	AAT Bioquest	20651
PowerLoad™ Concentrate, 100X	Thermo Fisher	P10020
DMEM/F12 (Imaging Medium)	Gibco™	11330057

This protocol is an adapted version of AAT Bio's Calbryte[™] 520 AM product manual which can be found <u>here</u>.

Resuspending Calbryte 520 AM:

- **1**. Briefly centrifuge 50 μ g tube
- Resuspend in 18 uL DMSO to make a ~2.5 mM (500X) stock solution
- 3. Store leftover solution at -20°C

Preparing 2X Loading Solution:

- 1. Calculate the appropriate amount of 2X Loading Solution needed
- 2. Add 1:250 Calbryte[™] 520 AM
- 3. Add 1:50 PowerLoad[™] Concentrate

Notes: 1) The resulting concentration of Pluronic F-127 in PowerLoad[™] Concentrate is unknown. 2) We <u>do not</u> use Probenecid due to potentially toxic effects on the cell and the Calbryte protocol states that the calcium indicator was specifically designed to eliminate the need for probenecid.

Vortex

Add appropriate amount of DMEM/F12

Loading the Dye:

- 1. Remove half the existing medium from the well. For 96-well plates, leave 50 uL of medium remaining.
- 2. Add the same amount removed of 2X Loading Solution. For 96well plates, add 50 uL of Loading Solution.

Note: The final concentration of Calbryte[™] 520 AM should be 5 uM and PowerLoad[™] Concentrate 1X.

3. Incubate for 40-50 minutes at 37 °C.

Note: Incubation for 30 and 70 minutes also works, but signal and background may de/increase.

- Exchange the Loading Solution with DMEM/F12 (imaging medium) twice. For 96-well plates, add 90 uL of DMEM/F12.
- 5. Incubate the cells for 15 minutes at room temperature.

Note: This "incubation" time typically occurs while setting up everything at the microscope, finding a sweet spot of cells, adjusting focus, etc.

Calcium Imaging Quick Guide RealDRG[™] Nociceptors

Imaging Setup

Fluorescent videos of RealDRG[™] cultures were acquired using a Leica DMI6000B microscope, a DFC365FX camera, and a 10x air objective (NA 0.25, Leica Microsystems) for a duration of 185 seconds at 4 frames per second.

Drug Dosing:

- 1. Drugs were prepared 10X working concentration in 1% DMSO in DMEM/F12.
- 2. Image acquisition was started on a random field of view with >200 cells.
- 3. Within 10 seconds of starting image acquisition, drugs were added to the cultures. For 96-well plates, 10 uL of the drug was added.

Comp	ound	List:
------	------	-------

Drug	Working Conc.	Vendor	Catalog #
Veratridine	1 µM	Tocris	2918
Tetrodotoxin	1 µM	Biotium	00061
KCI	30 mM	Millipore Sigma	P5405
Capsaicin*	100/500 nM	Sigma-Aldrich	M2028
Capsazepine*	1 µM	Tocris	0464
Menthol*	100 µM	Sigma-Aldrich	M2772

Note: RealDRG[™] Nociceptors only respond to the compounds marked with an asterisk after a minimum of 4 weeks of maturation in Senso-MM.

Image Analysis:

Analysis was automated using FIJI

- 1. Individual somata were detected by local maxima-based image segmentation and binary threshold
- 2. Mean intensity was measured over time inside each soma
- 3. The intensity profiles were graphed, in terms of Δ F/F0, where Δ F is the intensity differential compared to minimum fluorescence (F0) of the given sample