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Microtubules (MTs) are dynamic cytoskeletal structures with 
multiple functions in cell growth, division, and morphological 
change. This review focuses on the MT lumen as a possible 
functional entity.  The internal environment of the MT has 
its own peculiar biophysical state and is largely thought to 
be excluded from cytoplasmic influence, except for the 2 
nm2 lateral pores1 and two 200 nm2 entrances at its ends2,3. 
Its biophysical state is outside the scope of this article, but it 
has very interesting vitreous, electromagnetic resonance, and 
optical properties4. 

Several groups have expanded our view of what life is like 
inside MTs. The first of these breakthroughs came in the 1960s 
and 1970s by studying the structure of MTs at nm resolution 
with electron microscopy. Among other observations of MTs, 
researchers found evidence of 4-7 nm spherical particles in the 
lumen of MTs of highly fixed cells5-8. The particles’ existence 
and frequency varied between cell type, with neuronal cells 
having the most particles. Also, Burton9 found the particles 
could be voided from the lumen by rapid disassembly and re-
assembly of intracellular MTs. Similar observations over the 
course of the next 30 years have culminated with observation 
of these particles in the MT lumen of non-fixed frozen 
sections of cells using vitreous cryoelectron microscopy or 
cryoelectron tomography10. Identification of intraluminal 
components has been difficult, but recent reports have found 
evidence of tubulin binding proteins and tubulin modifying 
enzymes.

Tubulin acetyltransferase (TAT) is known to transfer an acetyl 
group from acetyl-CoA to the luminal side of stable MTs at 
Lys40 of alpha-tubulin1,11. Although it is thought that luminal 
acetylation does not influence MT stability, it has been 
associated with differential binding of MT-associated proteins 
(MAPs), kinesin motor affinity (involving MT surface binding 
site12,13, but this was recently disputed by two groups11,14), 
MT severing15, and increased MT stiffness which is useful in 
mechanosensory and cilia functions16,17. Whether the TATs and 
tubulin histone deacetylase enzymes (HDAC6 and Sirt2) are a 
component of the 4-7 nm particles described above remains 
to be determined. However, the single or dimer form of TAT 

could possibly fill the void (TAT is a 3 x 6 x 3 nm ovoid18) and 
there is evidence of MEC-17 (a C. elegans TAT homolog) being 
localized within the MT lumen and in close association with 
the inner MT wall16.  Tau, a major neuronal MAP, is also known 
to have a binding site within the MT lumen19.  

How do proteins and particles get into the MT lumen?  There 
are the obvious entry points such as those mentioned in the 
first paragraph (2 nm2 pores and 200 nm2 ends).  However,  
each have limitations, as the 2 nm2 pores’ access is limited to 
small molecules (<1000 Da20,21) or thin strand-like molecules; 
for the MT ends, access is limited by the distance molecules 
can travel by diffusion22. A MT’s mid-point can be upwards of 
40 µm away from the MT end, and theoretical measurements 
put the diffusion rate of a 50 kDa protein entering an end 
between minutes/40 µm to years/40 µm, depending on the 
molecule’s affinity for internal MT walls22. Less obvious entry 
points include frayed MT ends10,23 and growing MT ends in 
conjunction with MT treadmilling24,25, and the breathing walls 
of the MT lattice recently observed by vitreous cryoelectron 
microscopy17 (see Fig. 1).  

Figure 1: Schematic representation of the entry points into the MT 
lumen. Showing, from left to right, a frayed/growing MT plus end 
capturing TAT and tau molecules, treadmilling, 2 nm2 pores, a 200 
nm2 open MT plus end, and a breathing MT lattice.
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Of the less obvious entry points, irregular or curling frayed MT ends have 
been observed in growing and shortening MTs in vitro, and recently in vivo via 
vitreous cryoelectron microscopy10 and digital model convoluted fluorescence 
microscopy23. When protofilaments are exposed at plus ends of MTs, the future 
MT lumen is exposed and possibly can act as a capture point for proteins/
particles destined for the lumen. Subsequent treadmilling could allow the 
captured entities to move to the minus end of the MT at 1 to 60 µm/min25. This 
is one possible mechanism to explain why the MAP tau has a binding site in the 
lumen as well as on the surface of MTs when MTs are formed in the presence 
of tau, but not when tau is added to pre-formed MTs which only results in tau 
binding to the outside surface of MTs19. Thus, in practical experiments to show 
molecules captured inside growing MTs, molecules can be included in a reaction 
containing polymerizing tubulin as compared to using pre-formed MTs (for 
example, compare Cat. # BK029 versus Cat. # T240 datasheet method sections, 
see below). 

In summary, several recent key papers indicate important molecules reside 
inside MTs, including acetylated alpha tubulin, TATs, the two major MT 
stabilizing agent (MSAs) binding sites of taxol and laulimalide/peloruside26, 
and of course, tau protein. In addition to the incredible biophysical properties 
recently reported by Sahu et al.4, these observations indicate life inside a MT is 
turning out to be just as interesting as on the MT surface.     
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Protein Source Purity Cat. # Amount

Microtubules 
pre-formed, lyophilized

Bovine Brain >99% MT001-A
MT001-B

4 x 500 µg
1 x 10 mg

Microtubules 
pre-formed, lyophilized

Porcine Brain >99% MT002-A
MT002-B

4 x 500 µg
1 x 10 mg

Tubulin Protein
Lyophilized (no glycerol)

Porcine Brain >99% T240-A
T240-B

1 x 1 mg
5 x 1 mg

Tubulin Protein, MAP rich Porcine Brain 70% tubulin
30% MAPs

ML116-A
ML116-B

1 x 1 mg
5 x 1 mg

Tau Protein Bovine Brain >90% TA01-A
TA01-B

1 x 50 µg
3 x 50 µg

Microtubule Associated Protein 
(MAP) Fraction

Bovine Brain 70% MAP2 MAPF-A
MAPF-B

1 x 100 µg
5 x 100 µg

Tubulin for HTS Applications Porcine Brain 97% HTS03-A
HTS03-B

1 x 4 mg
1 x 40 mg

Kit Cat. # Amount

Microtubule / Tubulin In Vivo Assay Biochem Kit™ BK038 30-100 
assays

Microtubule Binding Protein Spin-Down Assay Biochem Kit™ BK029 30-100 
assays

Tubulin Polymerization Assay Biochem Kit™
Turbidometric-based, >99% pure tubulin

BK006P 24-30 
assays

Tubulin Polymerization Assay Biochem Kit™
Turbidometric-based, >97% pure tubulin

BK004P 24-30 
assays

Tubulin Polymerization Assay Biochem Kit™
Fluorescence-based, >99% pure tubulin

BK011P 96 
assays
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