Human WGA Methylated & Non-methylated DNA Set

Cat. Nos. D5013, D5013-1, & D5013-2

Product Information Storage: -20 °C

Highlights:

- Purified, non-methylated and methylated human WGA (Whole Genome Amplified) DNAs are ideal for use as controls for many methylation detection applications.
- Control primers are designed to amplify non-methylated, methylated, and mixed methylation copies of the Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) gene following bisulfite conversion.

Product Contents:

	Cat. # D5013	Cat. # D5013-1	Cat. # D5013-2	Storage Temp.
Human WGA Non-methylated DNA	5 μg/20 μl	5 μg/20 μl	1	-20 °C
Human WGA Methylated DNA	5 μg/20 μl	1	5 μg/20 μl	-20 °C
RASSF1 Primers	20 µl		-	-20 °C

Description:

The Human WGA Methylated & Non-methylated DNA Set consists of two control DNAs (non-methylated and methylated) along with a set of specifically designed primers that can be used in conjunction with the EZ DNA Methylation™, EZ DNA Methylation-Gold™, EZ DNA Methylation-Direct™, and EZ DNA Methylation-Lightning™ kits from Zymo Research to assess the efficiency of bisulfite-mediated conversion of DNA.

The Human WGA Methylated & Non-methylated DNA Set is generated using phi29 DNA polymerase based whole genome amplification techniques from HCT116 DKO cell line derived genomic DNA (Human HCT116 DKO Non-methylated DNA). The Human WGA Methylated DNA is Human WGA Non-methylated DNA that has been enzymatically methylated at all double-stranded CG dinucleotides using M.Sssl methyltransferase² (EC 2.1.1.37; Figure 2) and can be used as a positive control for DNA methylation analysis.

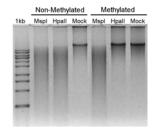


Figure 1. An assay for complete methylation by M.Sssl methytransferase. Digestion of non-methylated and methylated WGA DNA with restriction enzymes Mspl and Hpall. Mspl digests both nonmethylated and methylated DNA. Hpall is sensitive to CpG methylation.

Figure 2. M.SssI methytransferase methylates all cytosine residues in double-stranded CpG context.

Methylated cytosines comprising CG dinucleotides within DNA remain unconverted following bisulfite treatment, whereas non-methylated cytosines are converted to uracil and detected as thymine following

PCR. The control primers, RASSF1 primer I and RASSF1 primer II amplify methylated, non-methylated, and mixed methylation copies of the death-associated protein kinase 1 gene and are intended for use after bisulfite conversion of the control DNA. Recovered DNA is ideal for many applications including downstream analyses such as PCR, restriction endonuclease digestion, sequencing, etc.

References:

- 1. Rhee et al. Nature. 416: 552-556 (2002).
- 2. Nur et al. J. Bacteriol. 164: 19-24 (1985).

Protocol:

Note: We recommend using ZymoTaq™ DNA polymerase or other hotstart DNA polymerases for amplification of bisulfite-treated DNA.

1. PCR Setup:

The following setup is designed for a 20 µl total reaction volume:

Component	Volume	Final Conc.
RASSF1 primers*	Variable	0.2 to 1.0 µM each
Bisulfite-converted DNA**	2 µl	up to 20 ng/µl
10 mM dNTP mix	0.4 µl	0.2 mM each dNTP
Standard PCR buffer	Variable	1x
MgCl ₂ or MgSO ₄	Variable	1-4 mM, if needed
Zymo <i>Taq</i> ™ DNA Polymerase		
(or other Hot-Start DNA polymerase)	Variable	1 to 2 units
Add water to 20 ul		

- * Alternatively, you may substitute primers of your choice.
- ** Remember to bisulfite-treat the DNA prior to performing PCR.

2. Recommended Thermocycler Conditions:

- A. 95 °C, 10 minutes
- B. 95 °C, 30 secondsC. 59 °C, 30 to 60 seconds
- D. 72 °C, 60 seconds
- E. Repeat steps B through D an additional 35 to 45 times depending on the polymerase used.
- F. 72°C, 7 minutes
- G. 4 °C

Continued on reverse side...

Product Specifications:

I. Human WGA Non-methylated DNA, $5 \mu g/20 \mu l$.

Source: Whole genome amplified DNA from HCT116 DKO cells [DNMT1 (-/-) / DNMT3b (-/-)].

Concentration: 250 ng/μl in buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)
Storage: -20 °C

II. Human WGA Methylated DNA, 5 μg/20 μl.

Source: Whole genome amplified DNA from HCT116 DKO cells [enzymatically methylated by M.SssI methyltransferase].

Concentration: 250 ng/μl in buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)

Storage: -20 °C

III. Control Primers.

Concentration: 20 µM each primer in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)

Volume: 20 µl of mixed primers

Storage: -20 °C Sequence:

RASSF1 Primer I:

5' - GGTGGTTAYGGTTAGGGATTAGTTGT - 3'

RASSF1 Primer II:

5' - AACCCCACAATCCCTACACCCAAATTTCCATTA - 3'

Appendix:

The expected PCR amplicon for the Human WGA Non-methylated DNA is 327 bp and corresponds to the region 4962 to 5288 nucleotides downstream from the start of the RASSF1 coding sequence on the reverse strand, including the regions (italicized) that hybridize to the primers (GenBank Accession # NG_023270).

Original sequence of the RASSF1 fragment for bisulfite treatment and PCR amplification (anti-sense strand 5' to 3'). The cytosines in the CpG dinucleotide context (bold, underlined) are methylated enzymatically by M.SssI methyltransferase or not methylated in the non-methylated DNA.

5288	GGTGGCCA CG	GCCAGGGACC	<i>AGCTGCCG</i> TG	TGGGGTTGCA
5248	CGCG GTGCCC	CGCGCGATGC	G CAG CG TT	GGCA CG CTCC
5208	AGC C GGTG C	G GCCCTTCCC	AG CGCG CCCA	G CG GTGCCA
5168	GCTCC CG CAG	CTCAATGAGC	TCAGGCTCCC	C CG ACATGGC
5128	C CG GTTGGGC	C CG TGCTT CG	CTGGCTTTGG	G CG CTAGCAA
5088	G CGCG GGC CG	GGCGGGCCA	CAGGG CG GGC	CCCGACTTCA
5048	G CG CCTCCCC	CAGGATCCAG	ACTGGG C GC	G GGAAGGAGC
5008	TGAGGAGAGC	CGCG CAATGG	AAACCTGGGT	$\overline{G}CAGGGACTG$
4968	TGGGGTT	<u> </u>		

Expected sequence of the above DNA following bisulfite treatment:

<u>Human WGA Non-methylated DNA.</u> Below is the expected sequence for the Human WGA Non-methylated DNA after bisulfite conversion and PCR. During treatment with sodium bisulfite, non-methylated cytosines are converted into uracils, which are detected as thymines after PCR.

5288	GGTGGTTA	GTTAGGGATT	<i>AGTTGT</i> TG TG	TGGGGTTGTA
5248	TGTGGTGTTT	TGTGTGATGT	G TAG TGTG TT	$GGTA\underline{\mathbf{TG}}TTTT$
5208	AGT TG GGTG T	G GTTTTTTTT	AG TGTG TTTA	G TG GGTGTTA
5168	GTTTT TG TAG	TTTAATGAGT	TTAGGTTTTT	T TG ATATGGT
5128	TTGGTTGGGT	T TG TGTTT TG	TTGGTTTTGG	G TG TTAGTAA
5088	G TGTG GGT TG	GG TG GGGTTA	TAGGGTGGT	TT TG ATTTTA
5048	G TG TTTTTT	TAGGATTTAG	ATTGGG TG G T	G GGAAGGAGT
5008	TGAGGAGAGT	$\underline{\mathbf{TGTG}}TAATGG$	$AAATTT\overline{GGGT}$	$\overline{G}TAGGGATTG$
4968	TGGGGTT			

<u>Human WGA Methylated DNA.</u> Below is the expected sequence for the Human WGA Methylated DNA after bisulfite conversion and PCR. Methylated cytosines in the CpG dinucleotide context remain

unconverted following bisulfite treatment, whereas non-methylated cytosines, or cytosines not in the CpG context, are converted to uracils and detected as thymines after PCR.

5288	GGTGGTTA CG	GTTAGGGATT	<i>AGTTGTCG</i> TG	TGGGGTTGTA
5248	CGCGGTGTTT	CGCGCGATGC	G TAG CGCG TT	GGTA CG TTTT
5208	AGT CG GGTG C	G GTTTTTTTT	AG CGCG TTTA	G CG GGTGTTA
5168	GTTTT CG TAG	TTTAATGAGT	TTAGGTTTTT	T CG ATATGGT
5128	T CG GTTGGGT	TCGTTTTCG	TTGGTTTTGG	G CG TTAGTAA
5088	G CGCG GGT CG	GG CG GGGTTA	TAGGGCGGGT	TT CG ATTTTA
5048	G CG TTTTTTT	TAGGATTTAG	ATTGGG CG GC	G GGAAGGAGT
5008	TGAGGAGAGT	CGCG TAATGG	$AAATTT\overline{G}GGT$	$\overline{G}TAGGGATTG$
4968	TGGGGTT	·		

Also Available:

Product Name	Size	Catalog number
EZ DNA Methylation™ Kit	50 200 2 x 96 2 x 96	D5001 D5002 D5003 D5004
EZ DNA Methylation-Gold™ Kit	50 200 2 x 96 2 x 96	D5005 D5006 D5007 D5008
EZ DNA Methylation-Direct™ Kit	50 200 2 x 96 2 x 96	D5020 D5021 D5022 D5023
EZ DNA Methylation-Startup™ Kit	1 Kit	D5024
EZ DNA Methylation-Lightning™ Kit	50 200 2 x 96 2 x 96	D5030 D5031 D5032 D5033
Universal Methylated DNA Standard	1 set	D5010
Universal Methylated Human DNA Standard	1 set	D5011
Universal Methylated Mouse DNA Standard	1 set	D5012
Bisulfite Converted Universal Methylated Human DNA Standard	1 set	D5015
E. coli Non-methylated Genomic DNA	5 µg	D5016
Methylated-DNA IP Kit	10	D5101
ChIP DNA Clean & Concentrator™	50 50	D5201 D5205
Anti-5-Methylcytosine Monoclonal Antibody (clone 10G4)	50 μg 200 μg	A3001-50 A3001-200
Zymo <i>Taq</i> ™ DNA Polymerase	50 200	E2001 E2002
Zymo <i>Taq</i> ™ PreMix (2X concentrated)	50 200	E2003 E2004
CpG Methylase (M.SssI)	200 units 400 units	E2010 E2011

Trademarks and Disclaimers:

This product is for research use only and should only be used by trained professionals. Wear protective gloves and eye protection. Follow the safety guidelines and rules enacted by your research institution or facility.

The DKO technology is licensed from The Johns Hopkins University.

The Polymerase Chain Reaction (PCR) process is covered by U.S. Patent: #4,683,195; 4,683,202 assigned to Hoffmann-La Roche. Patents pending in other countries. No license under these patents to use the PCR process is conveyed expressly or by implication to the purchaser by the purchase of Zymo Research's products. Further information on purchasing licenses to practice the PCR process can be obtained from the director of Licensing at Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404 or at Roche Molecular Systems, Inc., 1145 Atlantic Avenue, Alameda, California 94501.

Version 1.0.1

[™] Trademarks of Zymo Research Corporation.