

Ugr 9-1

| Product name: Ugr 9-1       | <u>Synonyms :</u> π-AnmTX Ugr 9a-1 |
|-----------------------------|------------------------------------|
| <u>Catalog # :</u> 13UGR001 |                                    |

# Product description

Ugr 9-1 ( $\pi$ -AnmTX Ugr 9a-1) was isolated from the venom of the sea anemone *Urticina grebelnyi*. Ugr 9-1 reversibly inhibits homomeric human ASIC3. Ugr9-1 fully inhibits transient currents with an IC<sub>50</sub> value of around 10  $\mu$ M and also partially blocks sustained currents (IC<sub>50</sub> = 1.4  $\mu$ M). The peculiarity of this peptide is its ability to block ASIC3 when activated at weak pH (pH 4.0). Ugr 9-1 does not block or activate ASIC1a, ASIC1b, ASIC2a and Kv1.3 at significant concentrations.

Ugr 9-1 significantly reverses inflammatory and acid-induced pain in-vivo in mice. The antinociceptive effect is attributed to the block of the sustained inward Na+ current in sensitive neurons.

## Product specifications

**AA sequence:** Ile-Ser-Ile-Asp-Pro-Pro-Cys<sup>7</sup>-Arg-Phe-Cys<sup>10</sup>-Tyr-His-Arg-Asp-Gly-Ser-Gly-Asn-Cys<sup>19</sup>-Val-Tyr-Asp-Ala-Tyr-Gly-Cys<sup>26</sup>-Gly-Ala-Val-OH

Disulfide bonds: Cys<sup>7</sup>-Cys<sup>19</sup>, Cys<sup>10</sup>-Cys<sup>26</sup> Length (aa): 29 Formula: C<sub>134</sub>H<sub>196</sub>N<sub>38</sub>O<sub>42</sub>S<sub>4</sub> Appearance: White lyophilized solid Molecular Weight: 3135 Da CAS number: NA Source: Synthetic Counterion: TFA salts Solubility: Water or saline buffer, 5 mg/mL maximum (recommendation)

# **Formulation**

**Storage/Stability:** Shipped at ambient temperature under lyophilized powder. Store at -20°C (-4°F). Do not freeze-thaw. Aliquot sample if required and store at -80°C (-112°F).

Expiry date: One year

**Use restrictions:** For laboratory use only. Not for drug, household or other uses. Not for use in diagnostic or therapeutic procedures.

## Related products

- <u>Psalmotoxin 1 #13PCT001:</u> selective ASIC1a blocker
- APETx2 #07APE002: ASIC3 selective blocker

#### **References**

• Osmakov D., *et al.* (2013) Sea anemone peptide with uncommon  $\beta$  -hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. *JBC* 

For laboratory research use only