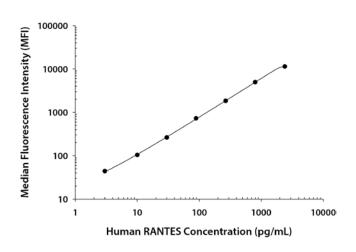


# Magnetic Luminex® Performance Assay Human CCL5/RANTES Kit


## Catalog Number: LUHM278 Pack Size: 100 Tests

# **SPECIFICATIONS AND USE**

| Recommended Sample Types<br>Microparticle Region<br>Components | <ul> <li>Cell culture supernates, serum, EDTA plasma, and heparin plasma.</li> <li>Region-36</li> <li>Microparticle Concentrate (Part 894448) is supplied as a 100X concentrated stock (0.075 mL) with preservatives.</li> </ul> |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                | <ul> <li>Biotin-Antibody Concentrate (Part 892635) is supplied as a 100X concentrated stock<br/>solution (0.075 mL) with preservatives.</li> </ul>                                                                               |
| Other Supplies Required                                        | • Magnetic Luminex Performance Assay Human Base Kit A (Catalog Number LUHM000).                                                                                                                                                  |
| Storage                                                        | <ul> <li>Store the unopened kit at 2-8 °C. Do not use past the expiration date on the label.</li> <li>Avoid freezing microparticles.</li> <li>Protect microparticles from light.</li> </ul>                                      |
| Instructions for Use                                           | Refer to the Base Kit insert for the Luminex Performance Assay procedure.                                                                                                                                                        |

# **TYPICAL DATA**

This human RANTES standard curve is provided only for demonstration. A standard curve must be generated each time an assay is run, utilizing values from the Standard Value Card included in the Base Kit.



| Standard | pg/mL | MFI              | Average | Corrected |
|----------|-------|------------------|---------|-----------|
| Blank    | 0     | 196<br>207       | 202     | _         |
| 1        | 2400  | 11,495<br>11,638 | 11,567  | 11,365    |
| 2        | 800   | 5109<br>5186     | 5148    | 4946      |
| 3        | 267   | 2032<br>2049     | 2041    | 1839      |
| 4        | 89    | 918<br>933       | 926     | 724       |
| 5        | 30    | 461<br>466       | 464     | 262       |
| 6        | 10    | 301<br>311       | 306     | 104       |
| 7        | 3     | 242<br>249       | 246     | 44        |

## **PERFORMANCE CHARACTERISTICS**

#### All data were collected with assays run as a multiplex. Data obtained with polystyrene and magnetic beads were equivalent.

**Sensitivity** - The Minimum Detectable Dose (MDD) was determined by adding two standard deviations to the MFI of twenty zero standard replicates and calculating the corresponding concentration.

Eighteen assays were evaluated, and the MDD of human RANTES ranged from 0.59-1.91 pg/mL. The mean MDD was 1.08 pg/mL.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

Intra-assay Precision (precision within an assay) - Three samples of known concentration were tested twenty times on one plate to assess precision within an assay.

**Inter-assay Precision (precision between assays)** - Three samples of known concentration were tested in twenty separate assays to assess precision between assays.

|                    | Int | tra-assay Precisi | on   | Inter-assay Precision |      |      |
|--------------------|-----|-------------------|------|-----------------------|------|------|
| Sample             | 1   | 2                 | 3    | 1                     | 2    | 3    |
| n                  | 20  | 20                | 20   | 20                    | 20   | 20   |
| Mean (pg/mL)       | 198 | 492               | 988  | 212                   | 473  | 938  |
| Standard Deviation | 13  | 49                | 121  | 17                    | 57   | 123  |
| % CV               | 6.4 | 10.0              | 12.2 | 7.9                   | 12.1 | 13.1 |

**Recovery and Linearity** – Samples containing and/or spiked with high concentrations of RANTES were evaluated for recovery and were serially diluted to evaluate assay linearity.

83-105

86-111

99

102-106

107-108

108

81-116

84-104

93

104-152

106-152

123

|                 | Recovery              |           |                       | Linearity             |                            |        |                |                   |
|-----------------|-----------------------|-----------|-----------------------|-----------------------|----------------------------|--------|----------------|-------------------|
| Sample Type     | Average<br>% Recovery | Range (%) |                       |                       | Cell culture<br>supernates | Serum  | EDTA<br>Plasma | Heparin<br>Plasma |
| Cell culture 95 | 78-114                | 1:2       | Average % of Expected | 95                    | 100                        | 102    | 114            |                   |
| supernates      | 95                    | 76-114    | 1:2                   | Range (%)             | 80-104                     | 98-102 | 90-126         | 102-130           |
|                 |                       |           | 1.4                   | Average % of Expected | 96                         | 104    | 97             | 124               |

Range (%)

Range (%)

1:8

**Specificity** - This assay recognizes natural and recombinant human RANTES. The assay was tested for cross-reactivity and interference with the following factors. Less than 0.5% cross-reactivity and interference was observed.

Average % of Expected

| Recombinant<br>human: |           |                     | Recombinant<br>mouse: |        | Recombinant<br>rat: | Recombinant porcine: | Recombinant human<br>multiplex partners: |        |
|-----------------------|-----------|---------------------|-----------------------|--------|---------------------|----------------------|------------------------------------------|--------|
| 6Ckine                | IL-1 RII  | IL-17               | G-CSF                 | IL-8   | GM-CSF              | GM-CSF               | ENA-78                                   | IL-6   |
| CNTF                  | IL-2 Ra   | IL-18               | GM-CSF                | IL-10  | IFN- $\gamma$       | IL-1α                | FGF basic                                | IL-8   |
| β-ECGF                | IL-2 Rβ   | LIF                 | IFN-γ                 | IL-17  | IL-1α               | IL-1β                | G-CSF                                    | IL-10  |
| FGF acidic            | IL-2 Rγ   | LIF R               | IL-1α                 | MIP-1a | IL-1β               | IL-2                 | GM-CSF                                   | IL-17  |
| FGF-4                 | IL-3 Ra   | MIP-1 $\alpha$      | IL-1ra                | MIP-1B | IL-2                | IL-4                 | IFN-y                                    | MCP-1  |
| FGF-5                 | IL-4 R    | MIP-3 $\alpha$      | IL-1                  | RANTES | IL-4                | IL-6                 | IL-1α                                    | MIP-1a |
| FGF-6                 | IL-5 Ra   | MIP-3β              | IL-2                  | Тро    | IL-6                | IL-8                 | IL-1β                                    | MIP-1ß |
| FGF-9                 | IL-6 R    | MCP-2               | IL-4                  | TNF-α  | IL-10               | IL-10                | IL-1ra                                   | Tpo    |
| FGF-10                | IL-10 R   | MCP-3               | IL-5                  | VEGF   | TNF-α               | Leptin               | IL-2                                     | TNF-α  |
| FGF-18                | IL-3      | MCP-4               | IL-6                  |        |                     | TNF-α                | IL-4                                     | VEGF   |
| GCP-2                 | IL-7      | M-CSF               |                       |        |                     |                      | IL-5                                     |        |
| $GR0\alpha$           | IL-9      | TNF RI              |                       |        |                     |                      |                                          |        |
| GR0β                  | IL-11     | TNF- $\alpha$       |                       |        |                     |                      |                                          |        |
| GR0γ                  | IL-12 p40 | VEGF <sub>121</sub> |                       |        |                     |                      |                                          |        |
| I-309                 | IL-12 p70 | VEGF <sub>165</sub> |                       |        |                     |                      |                                          |        |
| IGF-I                 | IL-13     | VEGF-D              |                       |        |                     |                      |                                          |        |
| IGF-II                | IL-15     |                     |                       |        |                     |                      |                                          |        |
| IL-1 RI               | IL-16     |                     |                       |        |                     |                      |                                          |        |

## **TECHNICAL HINTS**

- Protect the microparticles and streptavidin-PE from light at all times.
- Refer to the Base Kit Standard Value Card for reconstitution volume and values of the reconstituted standard.
- Diluted microparticles cannot be stored. Make a fresh dilution of microparticles each time the assay is run.
- The use of a magnetic device made to accommodate a microplate is necessary for washing.
- Discrepancies may exist in values obtained for the same analyte utilizing different technologies.

Luminex Performance Assays afford the user the benefit of multianalyte analysis of biomarkers in a complex sample. For each sample type, a single, multipurpose diluent is used to optimize recovery, linearity, and reproducibility. Such a multipurpose diluent may not optimize any single analyte to the same degree that a unique diluent selected for analysis of that analyte can optimize conditions. Therefore, some performance characteristics may be more variable than those for assays designed specifically for single analyte analysis.