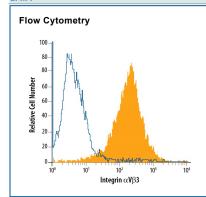


Human Integrin αVβ3 PE-conjugated Antibody

Monoclonal Mouse IgG₁ Clone # 23C6

Catalog Number: FAB3050P

100 TESTS


DESCRIPTION			
Species Reactivity	Human		
Specificity	Detects human Integrin αVβ3.		
Source	Monoclonal Mouse IgG ₁ Clone # 23C6		
Purification	Protein A or G purified from hybridoma culture supernatant		
Immunogen	Human osteoclasts		
Conjugate	Phycoerythrin Excitation Wavelength: 488 nm Emission Wavelength: 565-605 nm		
Formulation	Supplied in a saline solution containing BSA and Sodium Azide. See Certificate of Analysis for details.		
	*Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Sheet (SDS) for additional information and handling instructions.		

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

	Recommended Concentration	Sample
Flow Cytometry	10 μL/10 ⁶ cells	See Below

DATA

Detection of Integrin $\alpha V\beta 3$ in HUVEC Human Cells by Flow Cytometry. HUVEC human umbilical vein endothelial cells were stained with Mouse Anti-Human Integrin $\alpha V\beta 3$ PEconjugated Monoclonal Antibody (Catalog # FAB3050P, filled histogram) or isotype control antibody (Catalog # IC002P, open histogram). View our protocol for Staining Membrane-associated Proteins.

PREPARATION AND STORAGE

Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Protect from light. Do not freeze.

12 months from date of receipt, 2 to 8 °C as supplied.

Human Integrin αVβ3 PE-conjugated Antibody

Monoclonal Mouse IgG₁ Clone # 23C6

Catalog Number: FAB3050P

100 TESTS

BACKGROUND

Integrin $\alpha V\beta 3$, together with Integrin $\alpha IIb\beta 3$, constitute the only known $\beta 3$ Integrins (1–3). The non-covalent heterodimer of 170 kDa $\alpha V/CD51$ and 93 kDa $\beta 3/CD61$ subunits shows wide expression, notably by endothelial cells and osteoclasts (2–4). Each subunit has a transmembrane sequence and a short cytoplasmic tail connected to the cytoskeleton. Active cell surface $\alpha V\beta 3$ adheres to matrix proteins including vitronectin, fibrinogen and thrombospondin (2, 3). The ligand binding site of $\alpha V\beta 3$ is in the N-terminal head region, formed by interaction of the $\beta 3$ vWFA domain with the αV beta-propeller structure (4). The αV subunit contributes a thigh and a calf region, while the $\beta 3$ subunit contains a PSI domain and four cysteine-rich I-EGF folds. The αV subunit domains termed thigh, calf-1 and calf-2 generate a "knee" region that is bent when the $\alpha V\beta 3$ is in its constitutively inactive state. Activation, either by "inside out" signaling or by Mg^{2+} or Mn^{2+} binding, extends the Integrin to expose its ligand binding site (1, 4). Two splice variants of $\beta 3$ (b and c) diverge over the last 21 amino acids (aa) and lack cytoplasmic phosphorylation sites (5, 6). Another $\beta 3$ splice variant diverges after the vWFA domain, producing a soluble 60 kDa form in platelets and endothelial cells (7). $\alpha V\beta 3$ is essential for the maturation of osteoclasts and their binding and resorption of bone; it also, however, promotes their apoptosis (8, 9). M-CSF R and $\alpha V\beta 3$ share signaling pathways during osteoclastogenesis, and deletion of either molecule causes osteopetrosis (8, 9). Also cell entry of several viruses is mediated by $\alpha V\beta 3$ (4, 10). The 962 aa human αV ECD (11) shares 92–95% aa sequence identity with mouse, rat and cow αV while the 685 aa human $\beta 3$ ECD (12) shares 95% aa identity with horse and dog, and 89–92% aa identity with mouse, rat and pig $\beta 3$.

References:

- 1. Hynes, R. O. (2002) Cell 110:673.
- 2. Serini, G. et al. (2006) Exp. Cell Res. 312:651.
- 3. Ross, F. P. and S. L. Teitelbaum (2005) Immunol. Rev. 208:88.
- 4. Xiong, J. et al. (2001) Science 294:339.
- 5. Kumar, C. S. et al. (1987) J. Biol. Chem. 272:16390.
- 6. vanKuppevelt, H. et al. (1989) Proc. Natl. Acad. Sci. USA 86:5415.
- 7. Djaffar, I. et al. (1994) Biochem. J. 300:67.
- McHugh, K. P. et al. (2000) J. Clin. Invest. 105:433.
- 9. Faccio, R. et al. (2003) J. Clin. Invest. 111:749.
- 10. Chu, J. J. and M. Ng (2004) J. Biol. Chem. 279:54533.
- 11. Suzuki, S. et al. (1987) J. Biol. Chem. 262:14060.
- 12. Fitzgerald, L. A. et al. (1987) J. Biol. Chem. 262:3936.

