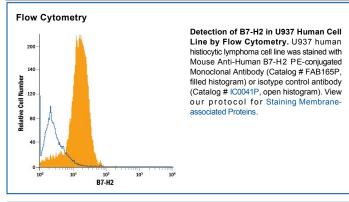
Human B7-H2 PE-conjugated Antibody

Monoclonal Mouse IgG_{2B} Clone # 136726

Catalog Number: FAB165P 100 TESTS


DESCRIPTION			
Species Reactivity	Human		
Specificity	Detects human B7-H2 in direct ELISAs. In direct ELISAs and Western blots, no cross-reactivity with recombinant human (rh) B7-1, rhB7-2, rhB7-H1, rhB7-H3, or recombinant mouse B7-H2 is observed.		
Source	Monoclonal Mouse IgG _{2B} Clone # 136726		
Purification	Protein A or G purified from hybridoma culture supernatant		
Immunogen	Mouse myeloma cell line NS0-derived recombinant human B7-H2 Asp19-Ser258 Accession # O75144		
Conjugate	Phycoerythrin Excitation Wavelength: 488 nm Emission Wavelength: 565-605 nm		
Formulation	Supplied in a saline solution containing BSA and Sodium Azide. See Certificate of Analysis for details.		
	*Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Shee (SDS) for additional information and handling instructions.		

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

	Recommended Concentration	Sample
Flow Cytometry	10 μL/10 ⁶ cells	See Below

DATA

PREPARATION AND STORAGE

Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Protect from light. Do not freeze.

• 12 months from date of receipt, 2 to 8 °C as supplied.

BACKGROUND

Human B7-H2, also called B7RP-1, B7h, LICOS, and GL50, is a 60 kDa member of the B7 family of immune costimulatory proteins, which includes B7-1, B7-2, B7-H1 (PD-L1), PD-L2, and B7-H3. B7 proteins are members of the immunoglobulin (Ig) superfamily, the extracellular domains contain 2 Ig-like domains and all members have short cytoplasmic domains. Family members share about 20–25% amino acid identity. Within the extracellular domain, human B7-H2 shares 49% and 54% amino acid sequence identity with human and rat B7-H2, respectively. B7-H2 has been identified as the ligand for ICOS, a member of the CD28 family of costimulatory receptors. Human B7-H2 is a 309 amino acid (aa) protein with a putative 18 aa signal peptide, a 239 aa extracellular domain, an 18 aa transmembrane region, and a 33 aa cytoplasmic domain. Human B7-H2 is expressed constitutively on resting B cells, dendritic cells, and at low levels on monocytes. The B7-H2/ICOS interaction appears to play roles in T cell dependent B cell activation and T_h differentiation.

References:

- 1. Coyle, A.J. and J.C. Gutierrez-Ramos (2001) Nat. Immunol. 2:203.
- 2. Ling, V. et al. (2000) J. Immunol. 164:1653.
- Wang, S. et al. (2000) Blood 96:2808.
- Brodie, D. et al. (2000) Curr. Biol. 10:333.
- 5. Mages, H.W. et al. (2000) Eur. J. Immunol. **30**:1040.
- 6. Swallow, M.M. et al. (1999) Immunity 11:423.
- 7. Yoshinaga, S.K. et al. (1999) Nature 402:827.

