Quantikine[®] ELISA

Human Angiopoietin-2 Immunoassay

Catalog Number DANG20 SANG20 PDANG20

For the quantitative determination of human Angiopoietin-2 concentrations in cell culture supernates, serum, plasma, and saliva.

This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures.

TABLE OF CONTENTS

SECTION

PAGE

INTRODUCTION1	
PRINCIPLE OF THE ASSAY1	
LIMITATIONS OF THE PROCEDURE	
TECHNICAL HINTS	
PRECAUTIONS2	
MATERIALS PROVIDED & STORAGE CONDITIONS	,
OTHER SUPPLIES REQUIRED	
SAMPLE COLLECTION & STORAGE	
SAMPLE PREPARATION4	
REAGENT PREPARATION	ļ
ASSAY PROCEDURE)
CALCULATION OF RESULTS	,
TYPICAL DATA7	,
PRECISION	,
RECOVERY	,
LINEARITY	,
SENSITIVITY)
CALIBRATION9)
SAMPLE VALUES)
SPECIFICITY)
REFERENCES)

MANUFACTURED AND DISTRIBUTED BY:

USA & Canada | R&D Systems, Inc.

614 McKinley Place NE, Minneapolis, MN 55413, USA TEL: (800) 343-7475 (612) 379-2956 FAX: (612) 656-4400 E-MAIL: info@RnDSystems.com

DISTRIBUTED BY:

UK & Europe | R&D Systems Europe, Ltd.

19 Barton Lane, Abingdon Science Park, Abingdon OX14 3NB, UK TEL: +44 (0)1235 529449 FAX: +44 (0)1235 533420 E-MAIL: info@RnDSystems.co.uk

China | R&D Systems China Co., Ltd.

24A1 Hua Min Empire Plaza, 726 West Yan An Road, Shanghai PRC 200050 TEL: +86 (21) 52380373 FAX: +86 (21) 52371001 E-MAIL: info@RnDSystemsChina.com.cn

INTRODUCTION

Angiopoietin-2 (Ang2) is an approximately 70 kDa secreted glycoprotein that plays a complex role in angiogenesis, inflammation, and vascular development. Angiopoietin-2 contains a coiled-coil domain that mediates multimerization and a C-terminal Fibrinogen-like domain that mediates receptor binding (1, 2). It forms disulfide-linked dimers, trimers, tetramers, and pentamers (2-4). Mature human Angiopoietin-2 shares 86% amino acid (aa) sequence identity with mouse and rat Angiopoietin-2. Angiopoietin-2 is expressed in vascular endothelial (EC) and smooth muscle cells in highly angiogenic tissues (e.g. placenta, ovaries, uterus, and tumor vasculature) (5-9), lung epithelial cells, differentiating myotubes, and neural progenitor cells (10-12). It is upregulated by cellular stress (7, 10, 13, 14) and circulates at elevated levels in sepsis and acute lung injury (10, 15).

Both Angiopoietin-2 and the related Angiopoietin-1 (Ang-1) are ligands for the receptor tyrosine kinase Tie-2 (5). Angiopoietin-2 acts as a Tie-2 agonist, although it can also partially antagonize the activation of Tie-2 by Angiopoietin-1 (5, 7, 15-17). Angiopoietin-2 promotes EC survival, proliferation, and migration, and also promotes sprouting angiogenesis (7, 17, 18). It induces the loss of pericytes from vessel walls and an increase of vascular permeability (14, 15, 19-21). Angiopoietin-2 is required for the development of lymphatic vessels as well as the postnatal remodeling of both lymphatic and vascular vessels (6, 19, 22). In cancer, Angiopoietin-2 production is induced by tumor-derived VEGF and augments VEGF-induced angiogenesis and tumor growth (8, 19, 23). In addition, Angiopoietin-2 modulates cell adhesion and promotes tumor cell migration through interactions with Integrins containing α 3, α 5, α V, β 1, or β 3 chains (24-26). It promotes leukocyte adhesion to the vascular endothelium and extravasation to inflammatory sites (10, 13, 19, 27). Aside from the circulatory system, Angiopoietin-2 promotes the differentiation of myoblasts, regulatory T cells, and neurons (11, 12, 28).

The Quantikine Human Angiopoietin-2 Immunoassay is a 4.5 hour solid-phase ELISA designed to measure human Angiopoietin-2 in cell culture supernates, serum, plasma, and saliva. It contains NSO-expressed recombinant human Angiopoietin-2 and has been shown to accurately quantitate the recombinant factor. Results obtained using natural human Angiopoietin-2 showed linear curves that were parallel to the standard curves obtained using the Quantikine kit standards. These results indicate that this kit can be used to determine relative mass values for naturally occurring human Angiopoietin-2.

PRINCIPLE OF THE ASSAY

This assay employs the quantitative sandwich enzyme immunoassay technique. A monoclonal antibody specific for human Angiopoietin-2 has been pre-coated onto a microplate. Standards and samples are pipetted into the wells and any Angiopoietin-2 present is bound by the immobilized antibody. After washing away any unbound substances, an enzyme-linked monoclonal antibody specific for human Angiopoietin-2 is added to the wells. Following a wash to remove any unbound antibody-enzyme reagent, a substrate solution is added to the wells and color develops in proportion to the amount of Angiopoietin-2 bound in the initial step. The color development is stopped and the intensity of the color is measured.

LIMITATIONS OF THE PROCEDURE

- FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.
- The kit should not be used beyond the expiration date on the kit label.
- Do not mix or substitute reagents with those from other lots or sources.
- If samples generate values higher than the highest standard, further dilute the samples with Calibrator Diluent and repeat the assay.
- Any variation in standard diluent, operator, pipetting technique, washing technique, incubation time or temperature, and kit age can cause variation in binding.
- Variations in sample collection, processing, and storage may cause sample value differences.
- This assay is designed to eliminate interference by other factors present in biological samples. Until all factors have been tested in the Quantikine Immunoassay, the possibility of interference cannot be excluded.

TECHNICAL HINTS

- When mixing or reconstituting protein solutions, always avoid foaming.
- To avoid cross-contamination, change pipette tips between additions of each standard level, between sample additions, and between reagent additions. Also, use separate reservoirs for each reagent.
- To ensure accurate results, proper adhesion of plate sealers during incubation steps is necessary.
- When using an automated plate washer, adding a 30 second soak period following the addition of Wash Buffer, and/or rotating the plate 180 degrees between wash steps may improve assay precision.
- Substrate Solution should remain colorless until added to the plate. Keep Substrate Solution protected from light. Substrate Solution should change from colorless to gradations of blue.
- Stop Solution should be added to the plate in the same order as the Substrate Solution. The color developed in the wells will turn from blue to yellow upon addition of the Stop Solution. Wells that are green in color indicate that the Stop Solution has not mixed thoroughly with the Substrate Solution.

PRECAUTIONS

Angiopoietin-2 is detectable in saliva. Take precautionary measures to prevent contamination of kit reagents while running this assay.

The Stop Solution provided with this kit is an acid solution.

Some components in this kit contain a preservative which may cause an allergic skin reaction. Avoid breathing mist.

Color Reagent B may cause skin, eye, and respiratory irritation. Avoid breathing fumes.

Wear protective gloves, clothing, eye, and face protection. Wash hands thoroughly after handling. Please refer to the MSDS on our website prior to use.

MATERIALS PROVIDED & STORAGE CONDITIONS

Store the unopened kit at 2-8 °C. Do not use past kit expiration date.

PART	PART #	CATALOG # DANG20	CATALOG # SANG20	DESCRIPTION	STORAGE OF OPENED/ RECONSTITUTED MATERIAL	
Human Angiopoietin-2 Microplate	892359	1 plate	6 plates	96 well polystyrene microplate (12 strips of 8 wells) coated with a monoclonal antibody specific for human Angiopoietin-2.	Return unused wells to the foil pouch containing the desiccant pack. Reseal along entire edge of the zip-seal. May be stored for up to 1 month at 2-8 °C.*	
Human Angiopoietin-2 Standard	892361	2 vials	12 vials	Recombinant human Angiopoietin-2 in a buffered protein base with preservatives; Iyophilized. <i>Refer to the vial label</i> <i>for reconstitution volume</i> .	Discard after use. Use a fresh standard for each assay.	
Human Angiopoietin-2 Conjugate	892360	1 vial	6 vials	21 mL/vial of a monoclonal antibody specific for human Angiopoietin-2 conjugated to horseradish peroxidase with preservatives.		
Assay Diluent RD1-76	895812	1 vial	6 vials	11 mL/vial of a buffered protein base with blue dye and preservatives.	May be stored for up to 1 month at 2-8 °C.*	
Calibrator Diluent RD5-5	895485	1 vial	6 vials	21 mL/vial of a buffered protein base with preservatives.		
Wash Buffer Concentrate	895003	1 vial	6 vials	21 mL/vial of a 25-fold concentrated solution of buffered surfactant with preservative. <i>May turn yellow over time.</i>		
Color Reagent A	895000	1 vial	6 vials	12 mL/vial of stabilized hydrogen peroxide.		
Color Reagent B	895001	1 vial	6 vials	12 mL/vial of stabilized chromogen (tetramethylbenzidine).		
Stop Solution	895032	1 vial	6 vials	6 mL/vial of 2 N sulfuric acid.		
Plate Sealers	N/A	4 strips	24 strips	Adhesive strips.		

* Provided this is within the expiration date of the kit.

DANG20 contains sufficient materials to run an ELISA on one 96 well plate. SANG20 (SixPak) contains sufficient materials to run ELISAs on six 96 well plates.

This kit is also available in a PharmPak (R&D Systems, Catalog # PDANG20). PharmPaks contain sufficient materials to run ELISAs on 50 microplates. Specific vial counts of each component may vary. Please refer to the literature accompanying your order for specific vial counts.

OTHER SUPPLIES REQUIRED

- Microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.
- Pipettes and pipette tips.
- Deionized or distilled water.
- Squirt bottle, manifold dispenser, or automated microplate washer.
- 500 mL graduated cylinder.
- Horizontal orbital microplate shaker (0.12" orbit) capable of maintaining a speed of 500 ± 50 rpm.
- Collection device for saliva samples that has no protein binding or filtering capabilities such as a Salivette[®] or equivalent.
- Polypropylene test tubes for dilution of standards and samples.
- Human Angiopoietin-2 Controls (optional; R&D Systems, Catalog # QC43).

SAMPLE COLLECTION & STORAGE

The sample collection and storage conditions listed below are intended as general guidelines. Sample stability has not been evaluated.

Cell Culture Supernates - Remove particulates by centrifugation and assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

Caution: Significant levels of Ang-2 are found in fetal bovine, bovine, porcine, equine, and rabbit sera. The background level of Ang-2 in control medium should be determined and subtracted from samples of conditioned medium.

Serum - Use a serum separator tube (SST) and allow samples to clot for 30 minutes at room temperature before centrifugation for 15 minutes at 1000 x g. Remove serum and assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

Plasma - Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 minutes at 1000 x g within 30 minutes of collection. Assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

Note: Citrate plasma has not been validated for use in this assay.

Saliva - Collect saliva using a collection device such as a Salivette or equivalent. Assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

Note: Saliva collector must not have any protein binding or filtering capabilities.

SAMPLE PREPARATION

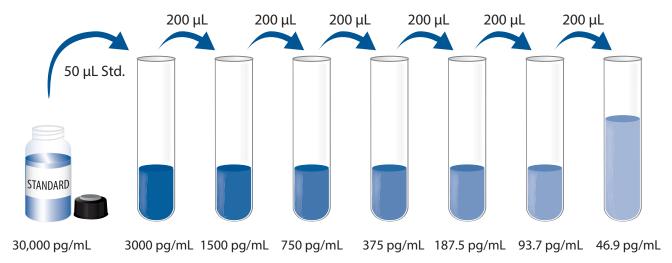
Use polypropylene tubes.

Serum and plasma samples require a 5-fold dilution. A suggested 5-fold dilution is 50 μ L of sample + 200 μ L of Calibrator Diluent RD5-5.

All trademarks and registered trademarks are the property of their respective owners.

REAGENT PREPARATION

Bring all reagents to room temperature before use.


Note: High concentrations of Angiopoietin-2 are found in saliva. We recommend using a face mask and gloves to protect kit reagents from contamination.

Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. Add 20 mL of Wash Buffer Concentrate to deionized or distilled water to prepare 500 mL of Wash Buffer.

Substrate Solution - Color Reagents A and B should be mixed together in equal volumes within 15 minutes of use. Protect from light. 200 μL of the resultant mixture is required per well.

Human Angiopoietin-2 Standard - **Refer to the vial label for the reconstitution volume.** Reconstitute the Human Angiopoietin-2 Standard with deionized or distilled water. This reconstitution produces a stock solution of 30,000 pg/mL. Mix the standard to ensure complete reconstitution and allow the standard to sit for a minimum of 15 minutes with gentle agitation prior to making dilutions.

Use polypropylene tubes. Pipette 450 µL of Calibrator Diluent RD5-5 into the 3000 pg/mL tube. Pipette 200 µL of Calibrator Diluent RD5-5 into the remaining tubes. Use the stock solution to produce a dilution series (below). Mix each tube thoroughly before the next transfer. The 3000 pg/mL standard serves as the high standard. Calibrator Diluent RD5-5 serves as the zero standard (0 pg/mL).

ASSAY PROCEDURE

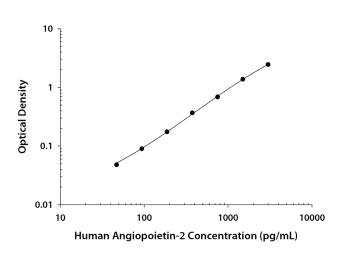
Bring all reagents and samples to room temperature before use. It is recommended that all standards, samples, and controls be assayed in duplicate.

Note: Angiopoietin-2 is detectable in saliva. Take precautionary measures to prevent contamination of kit reagents while running this assay.

- 1. Prepare all reagents, working standards, and samples as directed in the previous sections.
- 2. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, and reseal.
- 3. Add 100 μL of Assay Diluent RD1-76 to each well.
- 4. Add 50 μ L of Standard, control, or sample* per well. Cover with the adhesive strip provided. Incubate for 2 hours at room temperature on a horizontal orbital microplate shaker (0.12" orbit) set at 500 rpm ± 50 rpm.
- 5. Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with Wash Buffer (400 μ L) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
- 6. Add 200 μ L of Human Angiopoietin-2 Conjugate to each well. Cover with a new adhesive strip. Incubate for 2 hours at room temperature on the shaker.
- 7. Repeat the aspiration/wash as in step 5.
- 8. Add 200 μ L of Substrate Solution to each well. Incubate for 30 minutes at room temperature **on the benchtop. Protect from light.**
- 9. Add 50 μ L of Stop Solution to each well. The color in the wells should change from blue to yellow. If the color in the wells is green or the color change does not appear uniform, gently tap the plate to ensure thorough mixing.
- 10. Determine the optical density of each well within 30 minutes, using a microplate reader set to 450 nm. If wavelength correction is available, set to 540 nm or 570 nm. If wavelength correction is not available, subtract readings at 540 nm or 570 nm from the readings at 450 nm. This subtraction will correct for optical imperfections in the plate. Readings made directly at 450 nm without correction may be higher and less accurate.

^{*}Samples may require dilution. See Sample Preparation section.

CALCULATION OF RESULTS


Average the duplicate readings for each standard, control, and sample and subtract the average zero standard optical density (O.D.).

Create a standard curve by reducing the data using computer software capable of generating a four parameter logistic (4-PL) curve-fit. As an alternative, construct a standard curve by plotting the mean absorbance for each standard on the y-axis against the concentration on the x-axis and draw a best fit curve through the points on the graph. The data may be linearized by plotting the log of the human Angiopoietin-2 concentrations versus the log of the O.D. and the best fit line can be determined by regression analysis. This procedure will produce an adequate but less precise fit of the data.

If samples have been diluted, the concentration read from the standard curve must be multiplied by the dilution factor.

TYPICAL DATA

This standard curve is provided for demonstration only. A standard curve should be generated for each set of samples assayed.

(pg/mL)	0.D.	Average	Corrected
0	0.026	0.027	_
	0.027		
46.9	0.074	0.075	0.048
	0.076		
93.7	0.114	0.117	0.090
	0.120		
187.5	0.197	0.202	0.175
	0.206		
375	0.391	0.395	0.368
	0.398		
750	0.701	0.715	0.688
	0.728		
1500	1.394	1.406	1.379
	1.418		
3000	2.454	2.480	2.453
	2.506		

PRECISION

Intra-assay Precision (Precision within an assay)

Three samples of known concentration were tested twenty times on one plate to assess intra-assay precision.

Inter-assay Precision (Precision between assays)

Three samples of known concentration were tested in forty separate assays to assess inter-assay precision. Assays were performed by at least three technicians using two lots of components.

	Intra-Assay Precision			In	iter-Assay Precisio	on
Sample	1	2	3	1	2	3
n	20	20	20	40	40	40
Mean (pg/mL)	237	703	1301	276	805	1494
Standard deviation	16.4	45.6	54.4	28.8	73.0	111
CV (%)	6.9	6.5	4.2	10.4	9.1	7.4

RECOVERY

The recovery of human Angiopoietin-2 spiked to levels throughout the range of the assay in various matrices was evaluated.

Sample Type	Average % Recovery	Range
Cell culture media (n=4)	103	98-113%
Serum* (n=4)	100	90-107%
EDTA plasma* (n=4)	95	85-104%
Heparin plasma* (n=4)	94	87-104%

*Samples were diluted prior to assay as direct in the Sample Preparation section.

LINEARITY

To assess the linearity of the assay, samples containing and/or spiked with high concentrations of human Angiopoietin-2 were diluted with Calibrator Diluent to produce samples with values within the dynamic range of the assay.

		Cell culture media (n=4)	Serum* (n=4)	EDTA plasma* (n=4)	Heparin plasma* (n=4)	Saliva (n=4)
1.7	Average % of Expected	100	95	97	95	105
1:2	Range (%)	98-102	87-103	93-103	89-101	101-110
1.4	Average % of Expected	97	95	95	94	107
1:4	Range (%)	90-103	86-112	93-98	88-101	100-112
1.0	Average % of Expected	96	95	100	91	107
1:8	Range (%)	87-105	85-114	89-113	87-100	104-112

*Samples were diluted prior to assay as direct in the Sample Preparation section.

SENSITIVITY

Thirty-eight assays were evaluated and the minimum detectable dose (MDD) of human Angiopoietin-2 ranged from 1.20-21.3 pg/mL. The mean MDD was 8.29 pg/mL.

The MDD was determined by adding two standard deviations to the mean optical density value of twenty zero standard replicates and calculating the corresponding concentration.

CALIBRATION

This immunoassay is calibrated against a highly purified NS0-expressed recombinant human Angiopoietin-2 produced at R&D Systems.

SAMPLE VALUES

Serum/Plasma - Samples from apparently healthy volunteers were evaluated for the presence of human Angiopoietin-2 in this assay. No medical histories were available for the donors used in this study.

Sample Type	Mean (pg/mL)	Range (pg/mL)	Standard Deviation (pg/mL)
Serum (n=60)	2494	1065-8907	1341
EDTA plasma (n=35)	1964	1071-4389	808
Heparin plasma (n=35)	2049	1009-4973	913

Saliva - Nine samples were evaluated for the presence of human Angiopoietin-2 in this assay and ranged from 247-822 pg/mL.

Cell Culture Supernates - Two cultures of HUVEC human umbilical vein endothelial cells were grown to confluency in EGM supplemented with 2% fetal calf serum, 2 mM L-glutamine, 100 U/mL penicillin, 100 µg/mL streptomycin sulfate and bovine brain extract. Aliquots of the cell culture supernates were removed and assayed for levels of human Angiopoietin-2.

Sample	Values (pg/mL)
HUVEC Culture 1	2326
HUVEC Culture 2	7611

Note: Significant levels of Angiopoietin-2 are found in fetal bovine, bovine, porcine, equine, and rabbit sera. The background level of Angiopoietin-2 in control medium should be determined and subtracted from samples of conditioned medium.

SPECIFICITY

This assay recognizes natural and recombinant human Angiopoietin-2.

The factors listed below were prepared at 50 ng/mL in Calibrator Diluent and assayed for cross-reactivity. Preparations of the following factors at 50 ng/mL in a mid-range recombinant human Angiopoietin-2 standard were assayed for interference. No significant cross-reactivity or interference was observed.

Recombinant human:

ANG	VEGF ₁₂₁
Ang-1	VEGF ₁₆₅
Tie-2	VEGF/PIGF

REFERENCES

- 1. Augustin, H.G. et al. (2009) Nat. Rev. Mol. Cell Biol. 10:165.
- 2. Procopio, W.N. et al. (1999) J. Biol. Chem. 274:30196.
- 3. Kim, K-T. et al. (2005) J. Biol. Chem. 280:20126.
- 4. Xu, Y. and Q. Yu (2001) J. Biol. Chem. 276:34990.
- 5. Maisonpierre, P.C. et al. (1997) Science 27:55.
- 6. Gale, N.W. et al. (2002) Dev. Cell 3:411.
- 7. Daly, C. et al. (2006) Proc. Natl. Acad. Sci. USA 103:15491.
- 8. Zhang, L. et al. (2003) Cancer Res. 63:3403.
- 9. Holash, J. et al. (1999) Science 284:1994.
- 10. Bhandari, V. *et al*. (2006) Nat. Med. **12**:1286.
- 11. Mofarrahi, M. and S.N.A. Hussain (2011) PLoS ONE 7:e22882.
- 12. Liu, X.S. *et al.* (2009) J. Biol. Chem. **284**:22680.
- 13. Tressel, S.L. et al. (2008) Arterioscler. Thromb. Vasc. Biol. 28:1989.
- 14. Hammes, H-P. et al. (2004) Diabetes 53:1104.
- 15. Parikh, S.M. et al. (2006) PLoS Med. 3:e46.
- 16. Teichert-Kuliszewska, K. et al. (2001) Cardiovasc. Res. 49:659.
- 17. Yuan, H.T. et al. (2009) Mol. Cell. Biol. 29:2011.
- 18. Lobov, I.B. et al. (2002) Proc. Natl. Acad. Sci. USA 99:11205.
- 19. Fagiani, E. et al. (2011) Cancer Res. 71:5717.
- 20. Cao, Y. et al. (2007) Cancer Res. 67:3835.
- 21. Nasarre, P. et al. (2009) Cancer Res. 69:1324.
- 22. Dellinger, M. et al. (2008) Dev. Biol. 319:309.
- 23. Yoshiji, H. *et al*. (2005) Gut **54**:1768.
- 24. Carlson, T.R. et al. (2001) J. Biol. Chem. 276:26516.
- 25. Hu, B. et al. (2006) Cancer Res. 66:775.
- 26. Imanishi, Y. et al. (2007) Cancer Res. 67:4254.
- 27. Fiedler, U. et al. (2006) Nat. Med. 12:235.
- 28. Coffelt, S.B. et al. (2011) J. Immunol. 186:4183.

©2015 R&D Systems, Inc.