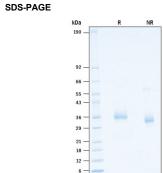
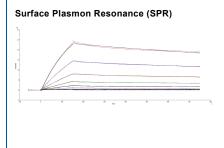

Recombinant SARS-CoV-2 B.1.617 Spike RBD His-tag


Catalog Number: 10846-CV

DESCRIPTION	
Source	Human embryonic kidney cell, HEK293-derived sars-cov-2 Spike RBD protein Arg319-Phe541 (Leu452Arg, Glu484Gln), with a C-terminal 6-His tag Accession # YP_009724390.1
N-terminal Sequence Analysis	Arg319
Predicted Molecular	26 kDa


SPECIFICATIONS	
SDS-PAGE	31-38 kDa, under reducing conditions
Activity	Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag (Catalog # 933-ZN).
Endotoxin Level	<0.10 EU per 1 µg of the protein by the LAL method.
Purity	>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.

PREPARATION AND STORAGE		
Reconstitution	Reconstitute at 500 μg/mL in PBS.	
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.	
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, -20 to -70 °C under sterile conditions after reconstitution.	

Recombinant SARS-CoV-2 B.1.617 Spike RBD His-tag Protein SDS-PAGE. 2 µg/lane of Recombinant SARS-CoV-2 B.1.617 Spike RBD His-tag (Catalog # 10846-CV) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 31-38 kDa.

Binding of ACE-2 to SARS-CoV-2 B.1.617 India variant Spike RBD by surface plasmon resonance (SPR). Recombinant SARS-CoV-2 B.1.617 India variant double mutant L452R E484Q Spike RBD protein was immobilized on a Biacore Sensor Chip CM5, and binding to recombinant human ACE-2 (Catalog # 933-ZN) was measured at a concentration range between 0.046 nM and 47.2 nM. The double-referenced sensorgram was fit to a 1:1 binding model to determine the binding kinetics and affinity, with an affinity constant of KD= 1.903 nM. (Biacore T200).

Rev. 5/7/2021 Page 1 of 2

Recombinant SARS-CoV-2 B.1.617 Spike RBD His-tag

Catalog Number: 10846-CV

BACKGROUND

SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that also include MERS and SARS-CoV-1. Coronaviruses are commonly comprised of four structural proteins: Spike protein (S), Envelope protein (E), Membrane protein (M) and Nucleocapsid protein (N) (1). The SARS-CoV-2 S protein is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into S1 and S2 subunits is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor while the S2 subunit is involved with cell fusion (3-5). A metallopeptidase, angiotensin-converting enzyme 2 (ACE-2), has been identified as a functional receptor for SARS-CoV-2 through interaction with a receptor binding domain (RBD) located at the C-terminus of S1 subunit (6, 7). The RBD of SARS-CoV-2 shares 73% amino acid (aa) identity with the RBD of the SARS-CoV-1, but only 22% aa identity with the RBD of MERS. A SARS-CoV-2 variant (B.1.617) carrying the aa substitution L452R and E484Q in the RBD was identified as a prevalent strain in India (8, 9). Whether these mutations in RBD would cause more severe symptom or decrease the efficacy of vaccine-induced immunity is still under investigation.

References:

- 1. Wu, F. et al. (2020) Nature 579:265.
- 2. Tortorici, M.A. and D. Veesler (2019) Adv. Virus Res. 105:93.
- 3. Bosch, B.J. et al. (2003). J. Virol. 77:8801.
- 4. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
- 5. Millet, J.K. and G.R. Whittaker (2015) Virus Res. 202:120.
- 6. Li, W. et al. (2003) Nature 426:450.
- 7. Wong, S.K. et al. (2004) J. Biol. Chem. 279:3197.
- 8. Yadav, P.D. et al. (2021) bioRxiv https://doi.org/10.1101/2021.04.23.441101.
- 9. Cherian, S. et al. (2021) bioRxiv https://doi.org/10.1101/2021.04.22.440932

