LifeSpan BioSciences, Inc.

CDC27 Rabbit anti-Human Polyclonal (C-Terminus) Antibody - LS-B4642 - LSBio

CatalogID:	LS-B4642
Validation:	This antibody replaces catalog number LS-C108707. It has been validated for use in the following assays: IHC-P.
Target:	cell division cycle 27 (CDC27)
Synonyms:	CDC27 Antibody, ANAPC3 Antibody, APC3 Antibody, CDC27 homolog Antibody, Cell division cycle 27 Antibody, D0S1430E Antibody, CDC27Hs Antibody, D17S978E Antibody, H-NUC Antibody, Nuc2 homolog Antibody, HNUC Antibody, NUC2 Antibody
Host	CDC27 antibody was produced in Rabbit
Clonality:	Polyclonal
Immunogen Species:	CDC27 antibody was raised against Human
Antigen Type:	Synthetic peptide
Immunogen:	CDC27 antibody was raised against a 19 amino acid peptide near the carboxy terminus of human APC3.
Specificity:	Human CDC27
Epitope:	C-Terminus
Reactivity:	Human, Mouse, Rat
Purification:	Immunoaffinity purified
Presentation:	PBS, 0.02\% sodium azide
Recommended Storage:	Short term $4^{\circ} \mathrm{C}$, long term aliquot and store at $-20^{\circ} \mathrm{C}$, avoid freeze thaw cycles. Store undiluted.
Usage Summary:	APC3 antibody can be used for detection of APC3 by Western blot at 1-2 ug/ml.
Uses:	IHC - Paraffin ($5 \mu \mathrm{~g} / \mathrm{ml}$), Western blot ($1-2 \mu \mathrm{~g} / \mathrm{ml}$), ELISA (Optimal dilution to be determined by the researcher)
Size:	$50 \mu \mathrm{~g}$
Concentration:	$1 \mathrm{mg} / \mathrm{ml}$

Immunohistochemistry Image:

Anti-CDC27 antibody IHC of human breast. Immunohistochemistry of formalin-fixed, paraffinembedded tissue after heat-induced antigen retrieval. Antibody LS-B4642 concentration 5 $\mathrm{ug} / \mathrm{ml}$.

Immunohistochemistry Image:

Anti-CDC27 antibody IHC of human skin. Immunohistochemistry of formalin-fixed, paraffinembedded tissue after heat-induced antigen retrieval. Antibody LS-B4642 concentration 5 $\mathrm{ug} / \mathrm{ml}$.

