


5-Ethynyl-UTP (5-EUTP)

5-Ethynyl-2'-uridine 5'-triphosphate, Sodium salt

Cat. No.	Amount
CLK-T08-S	5 μl (100 mM)
CLK-T08-L	5 x 5 μl (100 mM)
CLK-T08-XL	50 μl (100 mM)

Structural formula of 5-Ethynyl-UTP (5-EUTP)

For research use only!

Shipping: shipped on blue ice

Storage Conditions: store at -20 °C

Short term exposure (up to 1 week cumulative) to ambient temperature possible.

Shelf Life: 12 months after date of delivery **Molecular Formula:** C₁₁H₁₅N₂O₁₅P₃ (free acid) **Molecular Weight:** 507.97 g/mol (free acid)

Purity: ≥ 95 %

Form: clear aqueous solution
Concentration: 100 mM

concentration. 100 mm

pH: 7.5

Spectroscopic Properties: λ_{max} 288 nm; ϵ 12.0 L mmol⁻¹ cm⁻¹

(Tris-HCl pH 7.5)

Applications:

Incorporation into RNA by T7 RNA polymerase-mediated in vitro transcription.

The resulting alkyne-functionalized RNA can subsequently be processed via Cu(I)-catalyzed (azide-alkyne) click chemistry that offers the choice

- to introduce a Biotin group for subsequent purification tasks (via Azides of Biotin)
- to introduce fluorescent group for subsequent microscopic imaging (via Azides of fluorescent dyes)
- to crosslink the RNA to azide-functionalized biomolecules e.g.proteins

Presolski et al.^[1] and Hong et al.^[2] provide a general protocol for Cu(I)-catalyzed click chemistry reactions that may be used as a starting point for the set up and optimization of individual assays.

Related Products:

Copper (II)-Sulphate (CuSO₄), #CLK-MI004 Tris(3-hydroxypropyltriazolylmethyl)amine (THPTA), #CLK-1010 Sodium Ascorbate (Na-Ascorbate), #CLK-MI005

Selected References:

[1] Presolski et al. (2011) Copper-Catalyzed Azide-Alkyne Click Chemistry for Bioconjugation. Current Protocols in Chemical Biology 3:153.

[2] Hong et al. (2011) Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation. Angew. Chem. Int. Ed. 48:9879.