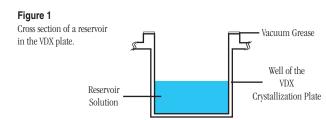
Crystal Screen Lite[™]

User Guide HR2-128 (pg 1)

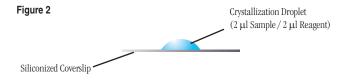
Crystal Screen Lite $^{\text{TM}}$ is a complete reagent kit designed to provide a rapid screening method for the crystallization of biological macromolecules. Crystal Screen Lite is a straightforward, effective, and practical kit for determining preliminary crystallization conditions. Crystal Screen Lite is also effective in determining the solubility of a macromolecule in a wide range of precipitants and pH.

Crystal Screen Lite is a sparse matrix of trial crystallization reagent conditions based upon the original Jancarik and Kim screen.³ The primary screen variables are salt, pH, and precipitant (salts, polymers, volatile organics, and non-volatile organics). Crystal Screen Lite differs from the original Crystal Screen™ kit in that Crystal Screen Lite is formulated such that the primary precipitant reagents are one-half the concentration of that used in the original Crystal Screen formulation. The secondary salts, ions, and buffers remain at the original Crystal Screen concentration. Reducing the primary concentration of the primary precipitant results in a screen which is "more gentle" on the sample and typically produces much less precipitate conditions than the original Crystal Screen. Results comparing the Crystal Screen Lite formulation versus simply diluting the Crystal Screen formulation twofold demonstrated more crystals using the Crystal Screen Lite protocol than the two-fold diluted Crystal Screen illustrating the importance of retaining the original salt, ion, and buffer concentration in Crystal Screen.⁵ Results comparing simply diluting the sample versus using Crystal Screen Lite also demonstrated more crystals when using Crystal Screen Lite than when simply diluting the sample. Crystal Screen Lite should be used with samples which demonstrate limited solubility in traditional crystallization reagents.

Sample Preparation


The macromolecular sample should be homogenous, as pure as is practically possible (>95%) and free of amorphous and particulate material. Remove amorphous material by centrifugation or micro-filtration prior to use. 1,2,4

The recommended sample concentration is 5 to 25 mg/ml in water. Initially, the sample should be free of any unnecessary additives in order to observe the effect of the Crystal Screen Lite variables. Ideally, the initial screen should be performed with a sample which has been dialyzed against water although ligands, ions, reducing agents, or other additives may be present as required by the sample for solubility, stability, or activity.


Performing The Screen

Since it is the most frequently reported method of crystallization, the following procedure describes the use of Crystal Screen Lite with the Hanging Drop Vapor Diffusion method. Crystal Screen Lite is also very compatible with the Sitting Drop, Sandwich Drop, Microbatch, and Microdialysis methods. A complete description of the Hanging, Sitting, Sandwich Drop, Dialysis and other crystallization methods are available from the Hampton Research Crystal Growth 101 Library.

1. Prepare a VDX Plate (HR3-140) for Hanging Drop Vapor Diffusion by applying a thin bead of cover slide sealant to the upper edge of each of the 24 reservoirs. One may also use a Greased VDX Plate (HR3-170). Fifty reservoirs are to be prepared for a complete Crystal Screen Lite. See Figure 1.

- 2. Using a clean pipet tip, pipet 1 ml of Crystal Screen Lite reagent 1 into reservoir A1. Discard the pipet tip, add a new pipet tip and pipet 1 ml of Crystal Screen Lite reagent 2 into reservoir A2. Repeat the procedure for the remaining 48 Crystal Screen Lite reagents using a clean pipet tip for each reagent so as to avoid reagent contamination and carry over.
- 3. Pipet 2 μ l of the sample to the center of a clean, siliconized 22 mm diameter circle or square cover slide. See Figure 2.

- 4. Pipet 2 μ l of Crystal Screen Lite reagent 1 from reservoir A1 into the sample droplet and mix by aspirating and dispensing the droplet several times, keeping the tip in the drop during mixing to avoid foaming. See Figure 2.
- 5. Working quickly to minimize evaporation, invert the cover slide and droplet over reservoir A1 and seal the cover slide onto the edge of the reservoir. See Figure 3.

Figure 3
Inverted siliconized coverslip placed over the reservoir.

- 6. Repeat operations 3 through 5 for the remaining 49 Crystal Screen Lite reagents.
- 7. If the quantity of sample permits, perform Crystal Screen Lite in duplicate and incubate one set of plates at 4° C and the second set at room temperature. Incubate and store the crystallization plates in a stable temperature environment free of vibration.

Crystal Screen Lite[™]

User Guide HR2-128 (pg 2)

Figure 4
Typical observations in a crystallization experiment

Clear Drop

Skin / Precipitate

Precipitate

Precipitate / Phase

Quasi Crystals

Microcrystals

Needle Cluster

Plates

Rod Cluster

Single Crystal

Examine The Drop

Carefully examine the drops under a stereo microscope (10 to 100x magnification) immediately after setting up the screen. Record all observations and be particularly careful to scan the focal plane for small crystals. Observe the drops once each day for the first week, then once a week there after. Records should indicate whether the drop is clear, contains precipitate, and or crystals. It is helpful to describe the drop contents using descriptive terms. Adding magnitude is also helpful. Example: 4+ yellow/brown fine precipitate, 2+ small bipyramid crystals, clear drop, 3+ needle shaped crystals in 1+ white precipitate. One may also employ a standard numerical scoring scheme (Clear = 0, Precipitate = 1, Crystal = 10, etc). Figure 4 (on the left) shows typical examples of what one might observe in a crystallization experiment.

Interpreting Crystal Screen Lite

Clear drops indicate that either the relative supersaturation of the sample and reagent is too low or the drop has not yet completed equilibration. If the drop remains clear after 3 to 4 weeks consider repeating the Crystal Screen Lite condition and doubling the sample concentration. If more than 35 of the 50 Crystal Screen Lite drops are clear consider doubling the sample concentration and repeating the entire screen.

Drops containing precipitate indicate that either the relative supersaturation of the sample and reagent is too high, the sample has denatured, or the sample is heterogeneous. To reduce the relative supersaturation, dilute the sample twofold and repeat the Crystal Screen Lite condition. If more than 35 of the 50 Crystal Screen Lite drops contain precipitate and no crystals are present, consider diluting the sample concentration in half and repeating the entire screen. If sample denaturation is suspect, take measures to stabilize the sample (add reducing agent, ligands, glycerol, salt, or other stabilizing agents). If the sample is impure, aggregated, or heterogeneous take measures to pursue homogeneity. It is possible to obtain crystals from precipitate so do not discard nor ignore a drop containing precipitate. If possible, examine drops containing precipitate under polarizing optics to differentiate precipitate from microcrystalline material.

If the drop contains a macromolecular crystal the relative supersaturation of the sample and reagent is good. The next step is to optimize the preliminary conditions (pH, salt type, salt concentration, precipitant type, precipitant concentration, sample concentration, temperature, additives, and other crystallization variables) which produced the crystal in order to improve crystal size and quality.

Compare the observations between the 4°C and room temperature incubation to determine the effect of temperature on sample solubility. Different results in the same drops at different temperatures indicate that sample solubility is temperature dependent and that one should include temperature as a variable in subsequent screens and optimization experiments.

Retain and observe plates until the drops are dried out. Crystal growth can occur within 15 minutes or one year.

Crystal Screen Lite Formulation

Crystal Screen Lite reagents are formulated using the highest purity chemicals, ultrapure water (18.2 Megohm-cm, 5 ppb TOC) and are sterile filtered using 0.22 micron filters into sterile containers (no preservatives added).

Crystal Screen Lite reagents are readily reproduced using Hampton Research Optimize™ stock solutions of salts, polymers and buffers. Optimize stock reagents make reproducing Crystal Screen Lite reagents fast, convenient and easy. Dilutions can be performed directly into the crystallization plate using Optimize stock reagents.

Crystal Screen Lite reagents containing buffers are formulated by creating a 1.0 M stock buffer, titrated to the desired pH using hydrochloric acid or sodium hydroxide. The buffer is then diluted with the other reagent components and water. No further pH adjustment is required.

Crystal Screen Lite reagents are stable at room temperature and are best if used within 12 months of receipt. To enhance reagent stability it is strongly recommended that Crystal Screen Lite be stored at 4°C or -20°C. Avoid ultraviolet light to preserve reagent stability.

If the sample contains phosphate, borate, or carbonate buffers it is possible to obtain inorganic crystals (false positives) when using Crystal Screen Lite reagents containing divalent cations such as magnesium, calcium, or zinc. To avoid false positives use phosphate, borate, or carbonate buffers at concentrations of 10 mM or less or exchange the phosphate, borate, or carbonate buffer with a more soluble buffer that does not complex with divalent cations.

Crystal Screen LiteTh

User Guide HR2-128 (pg 3)

References and Readings

- 1. Crystallization of nucleic acids and proteins, Edited by A. Ducruix and R. Giege, The Practical Approach Series, Oxford Univ. Press, 1992.
- Current approaches to macromolecular crystallization. McPherson, A. Eur. J. Biochem. 189, 1-23, 1990.
- 3. Sparse Matrix Sampling: a screening method for crystallization of proteins. Jancarik, J. and Kim, S.H. J. Appl. Cryst., 24,409-411, 1991.
- Protein and Nucleic Acid Crystallization. Methods, A Companion to Methods in Enzymology, Academic Press, Volume 1, Number 1, August 1990.
- Jarmila Jancarik, University of California Berkeley personal communication.

Technical Support

Inquiries regarding Crystal Screen Lite reagent formulation, interpretation of screen results, optimization strategies and general inquiries regarding crystallization are welcome. Please e-mail, fax, or telephone your request to Hampton Research. Fax and e-mail Technical Support are available 24 hours a day. Telephone technical support is available 8:00 a.m. to 4:30 p.m. USA Pacific Standard Time.

Crystal Screen Lite Fundamentals

HR2-128 (pg 1)

How to Reproduce Crystal Screen Lite Reagents

Crystal Screen Lite reagents and optimization conditions based on Crystal Screen Lite hits can be formulated using volumetric methods and carefully prepared reagent stocks (Table 1). Note the examples below.

Example 1. To prepare 1.0 milliliter of Crystal Screen Lite reagent 1 in a crystallization plate.

Solution Composition: 0.02 M Calcium chloride dihydrate 0.1 M Sodium acetate trihydrate pH 4.6 15 % v/v (+/-)-2-Methyl-2,4-pentanediol

• 730 ul water ³

- 20 μl 2.0 M Calcium chloride dihydrate (CAS # 10035-04-8, Catalog # HR2-557)
- 100 μl 1.0 M Sodium acetate trihydrate pH 4.6 (CAS # 6131-90-4, Catalog # HR2-731)
- 150 μl 100 % (+/-)-2-Methyl-2,4-pentanediol (CAS # 107-41-5, Catalog # HR2-627)

Make no pH adjustments. Mix well by aspirating and dispensing the solution multiple times.

Example 2. To prepare 1.0 milliliter of Crystal Screen Lite reagent 6.

Solution Composition: 0.2 M Magnesium chloride hexahydrate
0.1 M TRIS hydrochloride pH 8.5
15 % w/v Polyethylene glycol 4,000

- 500 µl water 3
- 100 μl 1.0 M TRIS hydrochloride pH 8.5 (CAS # 1185-53-1, Catalog # HR2-727)
- 100 µl 2.0 M Magnesium chloride hexahydrate (CAS # 7791-18-6, Catalog # HR2-555)
- 300 μl 50% w/v Polyethylene glycol 4,000 (CAS # 25322-68-3, Catalog # HR2-529)

Make no pH adjustments. Mix well.

Example 3. To prepare 10 milliliters of Crystal Screen Lite reagent 8.

Solution Composition: 0.2 M Sodium citrate tribasic dihydrate
0.1 M Sodium cacodylate trihydrate pH 6.5
15 % v/v 2-Propanol

- 6,250 µl water 3
- 1,000 μl 1.0 M Sodium cacodylate trihydrate pH 6.5 (CAS # 6131-99-3, Catalog # HR2-737)
- 1,250 μl 1.6 M Sodium citrate tribasic dihydrate (CAS # 6132-04-3, Catalog # HR2-549)
- 1,500 μl 100% 2-Propanol (CAS # 67-63-0, Catalog # HR2-619)

Make no pH adjustments. Mix well. Cover to prevent evaporation of the 2-Propanol.

³ ASTM Type II (laboratory grade) or Type III (analytical grade) water.

Formulation Notes for Crystal Screen Lite Reagents

- 1. No additional pH adjustment is made to any reagent after formulation. Use the buffers in Table 1 to reproduce a Crystal Screen Lite reagent.
- 2. All Optimize solutions and screen reagents are sterile filtered using 0.22 µm filters into sterile containers.
- 3. Add water first as this will help maintain the solubility of subsequently added reagents.
- 4. When formulating reagents using a pipet, add the largest volume last (except water). Use this larger volume setting to aspirate and dispense the reagent until the solution is mixed.
- 5. When formulating reagents using a pipet, use a clean, sterile pipet tip for <u>each</u> reagent added to the solution.
- 6. Use the buffers in Table 2 to systematically vary the pH as a crystallization variable.

pH as a Crystallization Variable

The buffers listed in Table 2, can be used to vary the pH as a crystallization variable and are recommended when optimizing a crystal grown from a Crystal Screen Lite kit.

Optimize TM buffer stocks are supplied as a 100 milliliters sterile filtered solution. The pH can be adjusted to the indicated pH range using either HCl or NaOH and the supplied titration tables.

StockOptions[™] buffer kits contain 10 milliliters each of ready to pipet buffers, titrated in 0.1 pH increments over the indicated pH range. The number of reagents offered in a StockOptions buffer kit depends upon the pH range of the buffer. The broader the pH range, the more buffers in the kit.

Online Information

Visit www.hamptonresearch.com and enter one of the following:

- Reagent Catalog Number
- Kit Catalog Number
- CAS Number
- Reagent Name

To obtain reagent specifications, pH titration tables, user guides, certificates of analysis, material safety data sheets (MSDS), and any other additional information.

Crystal Screen Lite Fundamentals

HR2-128 (pg 2)

<u>MakeTray</u>™

MakeTray is a free, web based program at www.hamptonresearch.com which generates both a pipetting worksheet and a reagent formulation document for crystallization set ups. MakeTray allows one to enter general information about the sample and experiment, which is then

printed on the pipet worksheet and the reagent formulation document. The plate size can be customized for any number of wells, so MakeTray works for: 24, 48, and 96 well plates. MakeTray is especially useful for the design and formulation of crystal optimization experiments.

Table 1. Recommended reagents for the formulation of Crystal Screen Lite and optimization reagents.

Each of these reagents are available as an OptimizeTM crystallization grade reagent from Hampton Research. Table 1 below provides the common chemical name, the Hampton Research catalog number, supplied stock concentration, the supplied volume, and the CAS number for each reagent. For more information on a specific Optimize reagent, go to

www.hamptonresearch.com. Using Search, enter either the catalog number, CAS number, or chemical name to obtain additional information for the Optimize reagent, including a Certificate of Analysis and MSDS (where applicable).

Salts	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#			
Ammonium acetate	HR2-565	1.0 M	100 ml	631-61-8			
	HR2-799	8.0 M	200 ml	631-61-8			
Ammonium phosphate monobasic	HR2-555	2.5 M	200 ml	7722-76-1			
Ammonium sulfate	HR2-541	3.5 M	200 ml	7783-20-2			
Calcium acetate hydrate	HR2-567	1.0 M	100 ml	62-54-4			
Calcium chloride dihydrate	HR2-557	2.0 M	100 ml	10035-04-8			
Lithium sulfate monohydrate	HR2-545	2.0 M	200 ml	10377-48-7			
Magnesium acetate tetrahydrate	HR2-561	1.0 M	100 ml	16674-78-5			
Magnesium chloride hexahydrate	HR2-559	2.0 M	100 ml	7791-18-6			
	HR2-803	5.0 M	200 ml	7791-18-6			
Magnesium formate dihydrate	HR2-537	1.0 M	200 ml	557-39-1			
Potassium phosphate monobasic	HR2-553	1.5 M	200 ml	7778-77-0			
Potassium sodium tartrate tetrahydrate	HR2-539	1.5 M	200 ml	6381-59-5			
Sodium acetate trihydrate	HR2-543	3.0 M	200 ml	6131-90-4			
Sodium citrate tribasic dihydrate	HR2-549	1.6 M	200 ml	6132-04-3			
Sodium formate	HR2-547	7.0 M	200 ml	141-53-7			
Sodium phosphate monobasic monohydrate	HR2-551	4.0 M	200 ml	10049-21-5			
Zinc acetate dihydrate	HR2-563	1.0 M	100 ml	5970-45-6			
Polymers	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#			
Polyethylene glycol 400	HR2-603	100 %	200 ml	25322-68-3			
Polyethylene glycol 1,500	HR2-525	50 % w/v	200 ml	25322-68-3			
Polyethylene glycol 4,000	HR2-529	50 % w/v	200 ml	25322-68-3			
Polyethylene glycol 8,000	HR2-535	50 % w/v	200 ml	25322-68-3			
	(Continued on page 3)						

Crystal Screen Lite Fundamentals

HR2-128 (pg 3)

Table 1 (Continued). Recommended reagents for the formulation of Crystal Screen Lite and optimization reagents.

Organics (volatile)	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#		
2-Propanol	HR2-619	100 %	200 ml	67-63-0		
Organics (non-volatile)	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#		
(+/-)-2-Methyl-2,4-pentanediol	HR2-627	100 %	200 ml	107-41-5		
Buffers	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#		
HEPES sodium pH 7.5 ¹	HR2-733	1.0 M	100 ml	75277-39-3		
Imidazole	HR2-573	1.0 M	100 ml	288-32-4		
Sodium acetate trihydrate pH 4.6 ¹	HR2-731	1.0 M	100 ml	6131-90-4		
Sodium cacodylate trihydrate pH 6.5 ¹	HR2-737	1.0 M	100 ml	6131-99-3		
Sodium citrate tribasic dihydrate pH 5.6 ¹	HR2-735	1.0 M	100 ml	6132-04-3		
TRIS hydrochloride pH 8.5 ²	HR2-727	1.0 M	100 ml	1185-53-1		
$^{1}\mathrm{pH}$ titrated using Hydrochloric acid (HR2-581) CAS # 7647-01-0						
² pH titrated usin	g Sodium hydroxide	(HR2-583) CAS # 1	310-73-2			

Table 2. Recommended buffers for screening the pH of Crystal Screen Lite and optimization reagents.

Buffer Solution <u>or</u> Kit	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#	pH range
Hepes sodium <u>untitrated</u>	HR2-577	1.0 M	100 ml	75277-39-3	6.6 - 8.5
Titrate with HCl	HR2-581	1.0 M	100 ml	7647-01-0	
StockOptions TM Sodium Hepes kit ⁴	HR2-231	1.0 M	10 ml each	75277-39-3	6.8 - 8.2
Imidazole <u>untitrated</u>	HR2-573	1.0 M	100 ml	288-32-4	6.2 - 7.8
Titrate with HCl	HR2-581	1.0 M	100 ml	7647-01-0	_
Sodium acetate trihydrate <u>untitrated</u>	HR2-569	1.0 M	100 ml	6131-90-4	3.6 - 5.6
Titrate with HCl	HR2-581	1.0 M	100 ml	7647-01-07	
StockOptions TM Sodium Acetate kit ⁴	HR2-233	1.0 M	10 ml each	6131-90-4	3.6 - 5.6
Sodium cacodylate trihydrate <u>untitrated</u>	HR2-575	1.0 M	100 ml	6131-99-3	5.0 - 7.4
Titrate with HCl	HR2-581	1.0 M	100 ml	7647-01-0	_
StockOptions™ Sodium Cacodylate kit ⁴	HR2-239	1.0 M	10 ml each	6131-99-3	5.1 - 7.4

(Continued on page 4)

Crystal Screen Lite Fundamentals

HR2-128 (pg 4)

Buffer Solution <u>or</u> Kit	Hampton Research Catalog #	Supplied [Stock]	Supplied Volume	CAS#	pH range
Sodium citrate tribasic dihydrate <u>untitrated</u>	HR2-571	1.0 M	100 ml	6132-04-3	3.0 - 6.2
Titrate with HCl	HR2-581	1.0 M	100 ml	7647-01-0	
StockOptions™ Sodium Citrate kit ⁴	HR2-235	1.0 M	10 ml each	6132-04-3	4.2 - 6.5
TRIS hydrochloride <u>untitrated</u>	HR2-579	1.0 M	100 ml	1185-53-1	7.0 - 9.0
Titrate with NaOH	HR2-583	1.0 M	100 ml	1310-73-2	
StockOptions™ TRIS hydrochloride kit ⁴	HR2-237	1.0 M	10 ml each	1185-53-1	7.0 - 9.0

⁴ Individual StockOptions buffers titrated to any pH within the kit's pH range are available in 185 ml volumes from the Hampton Research Custom Shop

Technical Support

Inquiries regarding Crystal Screen Lite Fundamentals, interpretation of screen results, optimization strategies and general inquiries regarding crystallization are welcome. Please e-mail, fax, or telephone your request to Hampton Research. Fax and e-mail Technical Support are available 24 hours a day. Telephone technical support is available 8:00 a.m. to 4:30 p.m. USA Pacific Standard Time.

yotai	Screen Lite				THE 120 Hoagont Formalation
Tube	Salt	Tube	Buffer ◊	Tube	Precipitant
#		#		#	
1.	0.02 M Calcium chloride dihydrate	1.	0.1 M Sodium acetate trihydrate pH 4.6	1.	15% v/v (+/-)-2-Methyl-2,4-pentanediol
2.	None	2.	None	2.	0.2 M Potassium sodium tartrate tetrahydrate
3.	None	3.	None	3.	0.2 M Ammonium phosphate monobasic
4.	None	4.	0.1 M TRIS hydrochloride pH 8.5	4.	1.0 M Ammonium sulfate
5.	0.2 M Sodium citrate tribasic dihydrate	5.	0.1 M HEPES sodium pH 7.5	5.	15% v/v (+/-)-2-Methyl-2,4-pentanediol
6.	0.2 M Magnesium chloride hexahydrate	6.	0.1 M TRIS hydrochloride pH 8.5	6.	15% w/v Polyethylene glycol 4,000
7.	None	7.	0.1 M Sodium cacodylate trihydrate pH 6.5	7.	0.7 M Sodium acetate trihydrate
	0.2 M Sodium citrate tribasic dihydrate	8.	0.1 M Sodium cacodylate trihydrate pH 6.5		15% v/v 2-Propanol
9.	0.2 M Ammonium acetate	9.	0.1 M Sodium citrate tribasic dihydrate pH 5.6	9.	15% w/v Polyethylene glycol 4,000
	0.2 M Ammonium acetate		0.1 M Sodium acetate trihydrate pH 4.6		15% w/v Polyethylene glycol 4,000
	None		0.1 M Sodium citrate tribasic dihydrate pH 5.6		0.5 M Ammonium phosphate monobasic
	0.2 M Magnesium chloride hexahydrate		0.1 M HEPES sodium pH 7.5		15% v/v 2-Propanol
I			· · · · · · · · · · · · · · · · · · ·		
I	0.2 M Sodium citrate tribasic dihydrate		0.1 M TRIS hydrochloride pH 8.5		15% v/v Polyethylene glycol 400
	0.2 M Calcium chloride dihydrate		0.1 M HEPES sodium pH 7.5		14% v/v Polyethylene glycol 400
	0.2 M Ammonium sulfate		0.1 M Sodium cacodylate trihydrate pH 6.5		15% w/v Polyethylene glycol 8,000
	None		0.1 M HEPES sodium pH 7.5		0.75 M Lithium sulfate monohydrate
l	0.2 M Lithium sulfate monohydrate		0.1 M TRIS hydrochloride pH 8.5		15% w/v Polyethylene glycol 4,000
1	0.2 M Magnesium acetate tetrahydrate		0.1 M Sodium cacodylate trihydrate pH 6.5		10% w/v Polyethylene glycol 8,000
1	0.2 M Ammonium acetate		0.1 M TRIS hydrochloride pH 8.5		15% v/v 2-Propanol
20.	0.2 M Ammonium sulfate		0.1 M Sodium acetate trihydrate pH 4.6		12.5% w/v Polyethylene glycol 4,000
21.	0.2 M Magnesium acetate tetrahydrate		0.1 M Sodium cacodylate trihydrate pH 6.5	21.	15% v/v (+/-)-2-Methyl-2,4-pentanediol
22.	0.2 M Sodium acetate trihydrate		0.1 M TRIS hydrochloride pH 8.5	22.	15% w/v Polyethylene glycol 4,000
23.	0.2 M Magnesium chloride hexahydrate	23.	0.1 M HEPES sodium pH 7.5	23.	15% v/v Polyethylene glycol 400
24.	0.2 M Calcium chloride dihydrate	24.	0.1 M Sodium acetate trihydrate pH 4.6	24.	10% v/v 2-Propanol
25.	None	25.	0.1 M Imidazole pH 6.5	25.	0.5 M Sodium acetate trihydrate
26.	0.2 M Ammonium acetate	26.	0.1 M Sodium citrate tribasic dihydrate pH 5.6	26.	15% v/v (+/-)-2-Methyl-2,4-pentanediol
27.	0.2 M Sodium citrate tribasic dihydrate	27.	0.1 M HEPES sodium pH 7.5	27.	10% v/v 2-Propanol
l	0.2 M Sodium acetate trihydrate		0.1 M Sodium cacodylate trihydrate pH 6.5		15% w/v Polyethylene glycol 8,000
	None	29.	0.1 M HEPES sodium pH 7.5		0.4 M Potassium sodium tartrate tetrahydrate
30.	0.2 M Ammonium sulfate	30.	None		15% w/v Polyethylene glycol 8,000
l	0.2 M Ammonium sulfate	31.			15% w/v Polyethylene glycol 4,000
	None	32.	None		1.0 M Ammonium sulfate
	None	33.	None		2.0 M Sodium formate
34.	None		0.1 M Sodium acetate trihydrate pH 4.6		1.0 M Sodium formate
	None		0.1 M HEPES sodium pH 7.5		0.4 M Sodium phosphate monobasic monohydrate
00.	140110	00.	o. i willer 20 ocalam pri 7.0	00.	0.4 M Potassium phosphate monobasic
36	None	36	0.1 M TRIS hydrochloride pH 8.5	36	4% w/v Polyethylene glycol 8,000
	None		0.1 M Sodium acetate trihydrate pH 4.6		4% w/v Polyethylene glycol 4,000
	None		0.1 M HEPES sodium pH 7.5		0.7 M Sodium citrate tribasic dihydrate
			0.1 M HEPES sodium pH 7.5		
39.	None	39.	0.1 W HERES SOCIUM PH 7.5	39.	2% v/v Polyethylene glycol 400 1.0 M Ammonium sulfate
40	None	40	0.1 M Codium citrate tribacia dibudrate al LEC	40	
40.	None	40.	0.1 M Sodium citrate tribasic dihydrate pH 5.6	40.	10% v/v 2-Propanol
			0.4.44.15050		10% w/v Polyethylene glycol 4,000
41.	None	41.	0.1 M HEPES sodium pH 7.5	41.	5% v/v 2-Propanol
					10% w/v Polyethylene glycol 4,000
	0.05 M Potassium phosphate monobasic	42.	None		10% w/v Polyethylene glycol 8,000
43.	None	43.	None		15% w/v Polyethylene glycol 1,500
1	None	44.	None	44.	0.1 M Magnesium formate dihydrate
45.	0.2 M Zinc acetate dihydrate	45.	0.1 M Sodium cacodylate trihydrate pH 6.5		9% w/v Polyethylene glycol 8,000
	0.2 M Calcium acetate hydrate	46.	0.1 M Sodium cacodylate trihydrate pH 6.5	46.	9% w/v Polyethylene glycol 8,000
47.	None	47.	0.1 M Sodium acetate trihydrate pH 4.6		1.0 M Ammonium sulfate
48.	None	48.	0.1 M TRIS hydrochloride pH 8.5		1.0 M Ammonium phosphate monobasic
	0.5 M Lithium sulfate monohydrate	49.	None		2% w/v Polyethylene glycol 8,000
	0.5 M Lithium sulfate monohydrate		None		7.5% w/v Polyethylene glycol 8,000
	,			-	1.575 th the organization gryoot office
			uffer pH is that of a 1.0 M stock prior to dilution with ther reagent components: pH with HCl or NaOH.		

other reagent components: pH with HCl or NaOH.

Crystal Screen Lite contains fifty unique reagents. To determine the formulation of each reagent, simply read across the page.

So		
m	\mathbb{R}	T
ion	RESE	H
Š.	S	
77	Œ	\leq
3	>	P
sta	R	リ
6	\circ	\circ
Solutions for Crystal Grov	田	$ \mathbf{Z} $

Sample: _

Sample Buffer:

e-mail: tech@hrmail.com Website: www.hamptonresearch.com	Tel: (949) 425-1321 • Fax: (949) 425-1611	Aliso Viejo, CA 92656-3317 U.S.A.	54 Journey
--	---	-----------------------------------	------------

	e Buffer:	3 Regular Granular			s (2D Growth))
		Ime: Temperature: 4 Birefringent Preci Total μl Sample μl Additive μl Microcrystals	-	8 Singl	e Crystals (3D	Growth < 0.2 mm) Growth > 0.2 mm)
	Cry	ystal Screen Lite™ - HR2-128 Scoring Sheet		Date:	Date:	Date:
	1. (0.02 M Calcium chloride dihydrate, 0.1 M Sodium acetate trihydrate pH 4.6, 15% v/v (+/-)-2-Methyl-2,4-pental	nediol			1
	2. (0.2 M Potassium sodium tartrate tetrahydrate				
	3. (0.2 M Ammonium phosphate monobasic				
	4. (0.1 M TRIS hydrochloride pH 8.5, 1.0 M Ammonium sulfate			1	
	5. (0.2 M Sodium citrate tribasic dihydrate, 0.1 M HEPES sodium pH 7.5, 15% v/v (+/-)-2-Methyl-2,4-pentanediol				
	6. (0.2 M Magnesium chloride hexahydrate, 0.1 M TRIS hydrochloride pH 8.5, 15% w/v Polyethylene glycol 4,000				
	7. (0.1 M Sodium cacodylate trihydrate pH 6.5, 0.7 M Sodium acetate trihydrate				1
	8. (0.2 M Sodium citrate tribasic dihydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 15% v/v 2-Propanol				
	9. (0.2 M Ammonium acetate, 0.1 M Sodium citrate tribasic dihydrate pH 5.6, 15% w/v Polyethylene glycol 4,000				
	10. (0.2 M Ammonium acetate, 0.1 M Sodium acetate trihydrate pH 4.6, 15% w/v Polyethylene glycol 4,000				
		0.1 M Sodium citrate tribasic dihydrate pH 5.6, 0.5 M Ammonium phosphate monobasic			1	1
MOTON	12. (0.2 M Magnesium chloride hexahydrate, 0.1 M HEPES sodium pH 7.5, 15% v/v 2-Propanol			<u> </u>	
2		0.2 M Sodium citrate tribasic dihydrate, 0.1 M TRIS hydrochloride pH 8.5, 15% v/v Polyethylene glycol 400				
→ _		0.2 M Calcium chloride dihydrate, 0.1 M HEPES sodium pH 7.5, 14% v/v Polyethylene glycol 400				1
		0.2 M Ammonium sulfate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 15% w/v Polyethylene glycol 8,000			1	1
		0.1 M HEPES sodium pH 7.5, 0.75 M Lithium sulfate monohydrate			1	1
		0.2 M Lithium sulfate monohydrate, 0.1 M TRIS hydrochloride pH 8.5, 15% w/v Polyethylene glycol 4,000				1
		0.2 M Magnesium acetate tetrahydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 10% w/v Polyethylene glycol 8	3,000			
		0.2 M Ammonium acetate, 0.1 M TRIS hydrochloride pH 8.5, 15% v/v 2-Propanol				
	20. (0.2 M Ammonium sulfate, 0.1 M Sodium acetate trihydrate pH 4.6, 12.5% w/v Polyethylene glycol 4,000				
	21. (0.2 M Magnesium acetate tetrahydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 15% v/v (+/-)-2-Methyl-2,4-pent	anediol			
	22. (0.2 M Sodium acetate trihydrate, 0.1 M TRIS hydrochloride pH 8.5, 15% w/v Polyethylene glycol 4,000				
	23. (0.2 M Magnesium chloride hexahydrate, 0.1 M HEPES sodium pH 7.5, 15% v/v Polyethylene glycol 400				
	24. (0.2 M Calcium chloride dihydrate, 0.1 M Sodium acetate trihydrate pH 4.6, 10% v/v 2-Propanol				
	25. (0.1 M Imidazole pH 6.5, 0.5 M Sodium acetate trihydrate			1	
≥	26. (0.2 M Ammonium acetate, 0.1 M Sodium citrate tribasic dihydrate pH 5.6, 15% v/v (+/-)-2-Methyl-2,4-pentane	diol		İ	
34 Jour Aliso Viejo, CA 92	27. (0.2 M Sodium citrate tribasic dihydrate, 0.1 M HEPES sodium pH 7.5, 10% v/v 2-Propanol	i		İ	İ
iejo,	28. (0.2 M Sodium acetate trihydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 15% w/v Polyethylene glycol 8,0	000		İ	
34 Jo CA 9	29. (0.1 M HEPES sodium pH 7.5, 0.4 M Potassium sodium tartrate tetrahydrate	ĺ		İ	
urne:	30. (0.2 M Ammonium sulfate, 15% w/v Polyethylene glycol 8,000	ĺ			
mey 656-3317 U.S.A.	31. (0.2 M Ammonium sulfate, 15% w/v Polyethylene glycol 4,000	ĺ			
7 U.S	32.	1.0 M Ammonium sulfate	ĺ			
À	33. 2	2.0 M Sodium formate	ĺ			
	34. (0.1 M Sodium acetate trihydrate pH 4.6, 1.0 M Sodium formate				
	35. (0.1 M HEPES sodium pH 7.5, 0.4 M Sodium phosphate monobasic monohydrate, 0.4 M Potassium phosphate mo	nobasic			
	36. (0.1 M TRIS hydrochloride pH 8.5, 4% w/v Polyethylene glycol 8,000				
	37. (0.1 M Sodium acetate trihydrate pH 4.6, 4% w/v Polyethylene glycol 4,000				
	38. (0.1 M HEPES sodium pH 7.5, 0.7 M Sodium citrate tribasic dihydrate				
	39. (0.1 M HEPES sodium pH 7.5, 2% v/v Polyethylene glycol 400, 1.0 M Ammonium sulfate				
	40. (0.1 M Sodium citrate tribasic dihydrate pH 5.6, 10% v/v 2-Propanol, 10% w/v Polyethylene glycol 4,000				
	41. (0.1 M HEPES sodium pH 7.5, 5% v/v 2-Propanol, 10% w/v Polyethylene glycol 4,000				
	42. (0.05 M Potassium phosphate monobasic, 10% w/v Polyethylene glycol 8,000				
	43. ·	15% w/v Polyethylene glycol 1,500				
	44. (0.1 M Magnesium formate dihydrate				
	45. (0.2 M Zinc acetate dihydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 9% w/v Polyethylene glycol 8,000				
	46. (0.2 M Calcium acetate hydrate, 0.1 M Sodium cacodylate trihydrate pH 6.5, 9% w/v Polyethylene glycol 8,000)			
	47. (0.1 M Sodium acetate trihydrate pH 4.6, 1.0 M Ammonium sulfate			ļ	
	48. (0.1 M TRIS hydrochloride pH 8.5, 1.0 M Ammonium phosphate monobasic			ļ	
	49. (0.5 M Lithium sulfate monohydrate, 2% w/v Polyethylene glycol 8,000				
	I EC -	0.5 M Lithium sulfate manchudrate, 7.5% w/v Delugthyland sheet 9.000			1	1

1 Clear Drop

2 Phase Separation

Sample Concentration: _

5 Posettes or Spherulites

6 Needles (1D Growth)