CYP450-GP

PRODUCT NUMBER Hu-A008
ANTI-HUMAN CYP2C19 IgG
Polyclonal Antibody Developed in Rabbits, IgG Fraction LOT RaY/B\#3-7 M-1c

Antiserum was developed in rabbits using recombinant human CYP2C19 as immunogen. The whole IgG fraction was purified from antiserum using caprylic acid/ammonium sulfate fractionation. Anti-CYP2C19 lgG is provided in a lyophilized state after freeze-drying from 100 mM potassium phosphate buffer $(\mathrm{pH} 7.4)$ containing 150 mM KCl and 2.5 $\mu \mathrm{M}$ thimerosal (added as a preservative).

- Specificity and Purity

Specificity has been determined by Western blotting, where anti-human CYP2C19 IgG recognizes only its 50 kDa immunogen in human liver microsomes. Cross-reactivity with human CYP2C8 and human CYP2C9 is minimal, and was removed by solid-phase back-adsorption against these human P450s. Antibody purity has been established by SDSPAGE run under denaturing conditions. Two protein bands with molecular weights of 50 kDa and 25 kDa are visualized upon Coomassie blue staining, which correspond to the heavy and light chains, respectively, of rabbit lgG.

- Reconstitution of Lyophylized Product and Storage

Store lyophylized product at $0-5^{\circ} \mathrm{C}$. Reconstitute the IgG to 1.0 mg protein $/ \mathrm{ml}$ final concentration by adding the appropriate amount of PBS $/ 50 \%$ glycerol to the vial, and mix gently until the powder dissolves. The solution can then be stored at $-20^{\circ} \mathrm{C}$, as the presence of 50% glycerol will prevent freeze/thawing. For immunoinhibition studies, reconstitute anti-CYP2C19 IgG in an appropriate buffer (e.g., 100 mM potassium phosphate, pH 7.4) to a concentration of $10-20 \mathrm{mg}$ $\mathrm{lgG} / \mathrm{ml}$, and store at $-20^{\circ} \mathrm{C}$. The number of freeze/thaw cycles should be kept to a minimum in the absence of glycerol.

Reaction of Anti-CYP2C19 with human liver proteins
Lane 1 = Microsomes Subject D (CYP2C19+)(15 $\mu \mathrm{g})$
Lane 2 = Microsomes Subject N (CYP2C19-)(15 $\mu \mathrm{g})$
Lane 3 = Purified CYP2C9 ($0.1 \mu \mathrm{~g}$)
Lane 4 = Purified CYP2C8 ($0.1 \mu \mathrm{~g}$)
Lane $5=$ Purified rCYP2C19 $(0.1 \mu \mathrm{~g})$

12345

- Use for Western Blotting

Incubate blots overnight with $2.5-5.0 \mu \mathrm{~g}$ rabbit anti-human CYP2C19 $\mathrm{lgG} / \mathrm{ml}$ of appropriate blocking solution. After washing to remove unbound CYP2C19 antibody, incubate with an anti-rabbit IgG conjugate of choice (e.g, anti-rabbit \lg-peroxidase or anti-rabbit IgG-biotin), and develop accordingly. A detailed Western blotting method can be found in the PROTOCOLS section.

- Use for Immunoinhibition

Incubation of anti-human CYP2C19 IgG with human liver microsomes at a ratio of $1.0 \mathrm{mg} \mathrm{IgG} / \mathrm{mg}$ microsomal protein ($2.5 \mathrm{mg} \mathrm{IgG} / \mathrm{nmol}$ microsomal P450) before reaction initiation will typically give 90% inhibition of an exemplary YP2C19catalyzed reaction (e.g., S-mephenytoin 4'-hydroxylation; see attached). Methodology for conducting P450 immunoinhibition assays is given in the PROTOCOLS section.

INHIBITION OF S-MEPHENYTOIN 4'-HYDROXYLATION IN HUMAN LIVER MICROSOMES BY ANTI-CYP2C19

Panel A - Antibodies to human CYP2C19 had a marked inhibitory effect (93% at 1 mg IgG/mg mx protein) on S mephenytoin 4'-hydroxylation by human liver microsomes whereas the other P450 antibodies tested failed to decrease this CYP2C19-catalyzed reaction. Panel B - In a separate experiment, optimal inhibition (90\%) of microsomal Smephenytoin 4'-hydroxylation was achieved at an anti-CYP2C19 IgG:mx protein ratio of $1 \mathrm{mg} / \mathrm{mg}$. Control (+preimmune IgG) rates of S-mephenytoin oxidation were 19.0 pmol 4-hydroxymephenytoin formed $/ \mathrm{min} / \mathrm{mg}$ protein.

