Mouse Anti-Human Immunoglobulin G2 FITC Monoclonal Antibody

Mouse, Monoclonal (Immunoglobulin G2)
Cat. No. DMAB4633
Lot. No. (See product label)

PRODUCT INFORMATION

Product Overview: Mab to $\lg G 2$

Mouse Monoclonal Antibody to Human Immunoglobulin G2
(lgG2), Y2 heavy chain
Clone: IP6015
Ig Isotype: Mouse $\operatorname{lgG}_{1} \mathrm{~K}$
Source: Ascites fluid
Format: Fluores cein (FITC) Conjugate
Quality: 0.5 mg
Specificity: Reacts with the Fd portion of the heavy chain of human $\lg G 2$ as demonstrated by ELISA
Applications: Enzyme-Linked-Immunosorbent-Assay (ELISA); Western blotting; Dot- and slot-immunoblotting; Immunohis tochem istry (frozen sections); Immunocytochemistry
Characterization: To insure lot-to-lot consistency, each batch of product is tested by ELISA for conformance to characteristics of a standard reference reagent.

Working Dilutions:

Immunofluores cence: $\leqslant 1 \mu \mathrm{~g} / 10^{6}$ cells
Other Applications: Since applications vary, you should determine the optimum working dilution of the product that is appropriate for your specific need.
Handling And Storage: The fluores cein (FITC) conjugate is supplied as 0.5 mg in 1.0 mL of $\mathrm{PBS} / \mathrm{NaN} 3$. Store at $2-8^{\circ} \mathrm{C}$. Each reagent is stable for the period shown on the bottle label if stored as directed.
Warning: Reagents contain sodium azide. Sodium azide is very toxic if ingested or inhaled. Avoid contact with skin, eyes, or clothing. Wear eye or face protection when handling. If skin or eye contact occurs, wash with copious amounts of water. If ingested or inhaled, contact a physician immediately. Sodium azide yields toxic hydrazoic acid under acidic conditions. Dilute azide-containing compounds in running water before discarding to avoid accumulation of potentially explosive deposits in lead or copper plumbing.

BACKGROUND

Introduction: Immunoglobulin G (lgG) are antibody molecules. Each IgG is composed of four peptide chains - two heavy chains y and two light chains. Each IgG has two antigen binding sites. Other Immunoglobulins may be described in terms of polymers with the lgG structure considered the monomer. lgG molecules are synthesized and secreted by plasma B cells. lgG antibodies are large molecules of about 150 kDa composed of 4 peptide chains. It contains 2 identical heavy chains of about 50 kDa and 2 identical light chains of about 25 kDa , thus a tetrameric quatemary structure. The two heavy chains are linked to each other and to a light chain each by disulfide bonds. The resulting tetramer has two identical halves, which together form the Y -like shape. Each end of the fork contains an identical antigen binding site. The Fc regions of IgGs bear a highly conserved N -glycosylation site. The N -glycans attached to this site are predominantly core-fucosylated diantennary structures of the complextype. In addition, small amounts of these N -glycans also bear bisecting GIcNAc and $\alpha-2,6$-linked sialic acid residues.
Keywords: Ig gamma-2 chain C region antibody, immunoglobulin Gm 2 ; immunoglobulin heavy constant gamma 2 (G2m marker); immunoglobulin heavy constant, gamma 2; IgG2; Immunoglobulin G2; $\lg \mathrm{G} 2 \mathrm{\gamma} 2$; Immunoglobulin G2ү2; IgG2 heavy chain, Immunoglobulin G2 heavy chain; IgG2y2heavy chain; Immunoglobulin G2ү2heavy chain

REFERENCES

1. Mallery DL, McEwan WA, Bidgood SR, Towers GJ, Johnson CM, James LC (2010). "Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21)". Proc. Natl. Acad. Sci. U.S.A. 107 (46): 19985-19990.
2. Painter PC, Mosher LE, Rhoads C (July 1982). "Lowfrequency modes in the Raman spectra of proteins". Biopolymers 21 (7): 1469-72.
3. Chou KC (February 1987). "The biological functions of lowfrequency vibrations (phonons). VI. A possible dynamic mechanism of allosteric transition in antibody molecules". Biopolymers 26 (2): 285-95.
