Anti-Mouse CD335 (NKp46) FITC

Catalogue Number : 37412-50 RUO: For Research Use Only. Not for use in diagnostic procedures.

Product Information

Clone: 29A1.4Format/Conjugate: FITCConcentration: 0.5 mg/mlReactivity: MouseLaser: Blue (488nm)Peak Emission: 520nmPeak Excitation: 494nmFilter: 530/30Brightness (1=dim,5=brightest): 3Isotype: Rat IgG2b, kappaFormulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2.Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light.Applications: FC

Description

The 29A1.4 antibody specifically reacts with CD335 (NKp46), a 46kDA natural cytotoxicity receptor family molecule. It is expressed in only NK and a rare subset of NK-like T cells, not including the CD1d-restricted NKT division. CD335 is active during NK lysis of pathogen-infected and tumor cells.

The 29A1.4 in vitro activates NK cells, but does not deplete NK cells in vivo.

Preparation & Storage

The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product.

Application Notes

The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. For flow cytometric staining, the suggested use of this reagent is ≤ 1 ug per million cells in 100 µl volume. It is recommended that the reagent be titrated for optimal performance for each application.

References

1. Walzer, T., Bléry, M., Chaix, J., Fuseri, N., Chasson, L., Robbins, S. H., ... ; Vivier, E. (2007). Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46.;Proceedings of the National Academy of Sciences,;104(9), 3384-3389.

2. Joncker, N. T., Fernandez, N. C., Treiner, E., Vivier, E., ; Raulet, D. H. (2009). NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model.; The Journal of Immunology, 182(8), 4572-4580.

3. Gazit, R., Gruda, R., Elboim, M., Arnon, T. I., Katz, G., Achdout, H., ... ; Mandelboim, O. (2006). Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1.; Nature immunology,;7(5), 517-523.