

SensoLyte[®] ADHP Hydrogen Peroxide Assay Kit **Fluorimetric**

Revision Number:1.1	Last Revised: October 2014	
Catalog #	AS-71112	
Kit Size	500 Assays (96-well) or 1250 Assays (384-well)	

- *Convenient Format:* Complete kit includes all the assay components.
- *Optimized Performance:* Optimal conditions for quantifying hydrogen peroxide and detecting oxidase.
- *Enhanced Value:* Less expensive than the sum of individual components.
- *High Speed:* Minimal hands-on time.
- Assured Reliability: Detailed protocol and references are provided.

Kit Components, Storage and Handling

Component	Description	Quantity
Component A	ADHP	10 mM, 250 μL
Component B	H ₂ O ₂ standard	1 vial
Component C	Assay buffer	60 mL
Component D	HRP, Horseradish peroxidase	5 vials, 100µL/vial

Other Materials Required (but not provided)

- <u>96-well or 384-well microplate</u>: Black, flat-bottom microplates with non-binding surface.
- <u>Fluorescence microplate reader</u>: Capable of detecting emission at 590 nm with excitation at 530-560 nm.

Storage and Handling

• For convenience, Component C can be stored at room temperature.

Introduction

Reactive oxygen species (ROS) play an important role in a variety of biological events, such as inflammation, ischemia and reperfusion, and neurodegeneration. Hydrogen peroxide (H_2O_2) is membrane permeable and is more stable than other ROS. It is often chosen to represent the ROS released by cell or cell organelles (e.g. mitochondria,¹ activated leukocytes²). H_2O_2 is also a co-product of many oxidase-catalyzed reactions. Consequently, it can serve as an indicator of the activity of oxidases (e.g. NADPH oxidase³, glucose oxidase⁴, and monoamine oxidase⁵).

The SensoLyte[®] ADHP Hydrogen Peroxide Assay Kit provides a convenient, highly sensitive fluorescent assay for quantifying H_2O_2 in solutions, in cell extracts and in live cells. In the enzyme-coupled reaction, non-fluorescent ADHP (10-Acetyl-3, 7-dihydroxyphenoxazine) can be oxidized to the strongly fluorescent resorufin in presence of H_2O_2 and horseradish peroxidase (HRP). The signal of resorufin can be easily read by a fluorescence microplate reader at Ex/Em=530-560 nm/590 nm.

Protocol

Note: Warm all kit components to room temperature before starting the experiment.

1. Prepare stock solution.

 <u>H₂O₂ stock solution (1 M)</u>: Add 100 μL of deionized water into the H₂O₂ vial (Component B) to get 1 M stock solution. Store this stock solution tightly capped at 4°C.

2. Set up the H₂O₂ standard curve (Optional).

Dilute 1 M H₂O₂ stock solution to 40 μM in assay buffer (Component C). Perform 2-fold serial dilutions with the assay buffer to get 20, 10, 5, 2.5, 1.25, and 0.63 μM H₂O₂ solutions. Add 50 μL/well of the serially diluted H₂O₂ solution to a 96-well plate or 20 μL/well to a 384-well plate. Include a negative control that does not contain any H₂O₂

3. Prepare test samples.

Add 50 μL/well (96-well plate) or 20 μL/well (384-well plate) of samples (e.g. mitochondria¹, activated leukocytes², monoamine oxidase with its substrate benzylamine³).

<u>Note</u>: Extremely large amount of H_2O_2 (e.g. >100 μ M) may further convert fluorescent resorufin to non-fluorescent resazurin and lead to reduction of fluorescence signal. It is necessary to test your sample with several different dilutions.

4. Prepare ADHP reaction mixture.

Prepare fresh ADHP reaction mixture according to the following Table 1 and keep away from light.
Table 1 ADHP reaction mixture for one 06 well plate (100 access)

Table 1. ADHP reaction mixture to	r one 96-wen plate (100 assays)
Components	Volume

Components	volume	
ADHP (Component A)	50 µL	
HRP (Component D)	100 µL	
Assay buffer (Component C)	4.85 mL	
Total volume	5 mL	

<u>Note 1</u>: This reaction mixture can detect 0.1 nmol of H_2O_2 with a linear range of up to 2 nmol (Figure 1). Lowering the ADHP concentration in the reaction mixture can decrease background and increase assay sensitivity. 10 μ M ADHP can detect as low as 2 pmol of $H_2O_2^2$. 2 μ M ADHP was used to detect H_2O_2 produced by mitochondria¹.

<u>Note 2</u>: You may change the assay buffer to any buffer appropriate for your samples. For example, you may use Krebs-Ringer phosphate for detecting H_2O_2 released from activated human leukocytes² or modified buffer for mitochondria¹. You may also add stimulating reagents in the reaction mixture.²

5. Detect H_2O_{2} .

- 5.1 Add 50 μ L/well (96-well plate) or 20 μ L/well (384-well plate) of ADHP reaction mixture. Mix the reagents by gently shaking the plate for 30 sec.
- 5.2 Incubate the reaction at the desired temperature for 15-30 min. Measure emission at 590 nm with excitation at 530-560 nm.

Figure 1. The standard curve of H_2O_2 H_2O_2 was serially diluted and detected according to the above protocol. With the total assay volume of 100 µL, the assay can detect as low as 1 µM (0.1 nmol) H_2O_2 with a linear range up to 20 µM (2 nmol) (R^2 >0.98). (n=2, mean±S.D.)

References

- 1. Votyakova, T.V. and Reynolds I.J., J. Neurochem. 79, 266 (2001)
- 2. Mohanty, J.G. et al. J. Immunol. Methods. 202, 133 (1997)
- 3. Zhou, M. et al. Anal. Biochem. 253, 162 (1997)
- 4. Sanchez, F.A. et al. Anal. Biochem. 187, 129 (1990)
- 5. Youdim, M.B. and Tenne M., Methods. Enzymol. 142, 617 (1987)