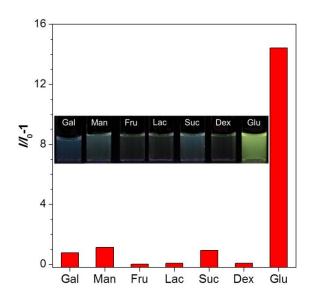
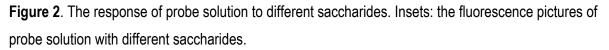

## **Product Specification**

# **AIE™ Glucose**




## Product Description


- Quick detection of glucose in aqueous solution.
- The yellow signal was exited at 365 nm and detected at 540 nm after adding samples into probe solution.
- High sensitivity and selectivity for glucose detection.
- Superior anti-interference compared with the glucose detection agents on market (capable of detecting the glucose in serum).



#### Demonstrations

**Figure 1**. (A) The fluorescence spectra of the probe solution with different glucose concentration; (B) The ratio of fluorescence increase versus the glucose concentration.





### Recommended storage condition

Store away from sunlight at 2-8 °C

### Product parameters

| Limited of Detection             | 0.5 μM – 1 μM                                                    |
|----------------------------------|------------------------------------------------------------------|
| Color:                           | Yellow                                                           |
| Imaging platform:                | Fluorescence microscope<br>Confocal microscope                   |
| Pack size and quantity:          | 10 µmol                                                          |
| Detection method:                | Fluorescence                                                     |
| Excitation/ Emission (nm):       | 344±30⁄540±20                                                    |
| Recommended transport condition: | Room temperature                                                 |
| Product declaration:             | Only used for research. Do not apply to any detection procedure. |

#### Product operation method and handbook

[handbook is uploaded with PDF file]; [MSDS handbook]

## **AlEgen Probe for Glucose Detection**

#### Introduction

- This product is suitable for glucose detection with yellow fluorescence with high selectivity and sensitivity.
- Under basic condition, this probe shows a better performance. It could selectively "turnon" after 60 minutes of incubation. The fluorescence intensity could be obtained in following optical condition:

*Excitation/Emission* =  $375 \pm 30/540 \pm 50$  nm

- The product is applicable for the glucose detection range from 0 to 200  $\mu$ M. (it needs to work with glucose oxidase, shorten as GOx)
- It could be also applied to serum glucose detection.

#### **Stock Solution Preparation**

1. AIEgen solution prepare: AIE<sup>TM</sup> Glucose (400  $\mu$ M) stock solution is prepared with the

10  $\mu$ mol of AIE<sup>TM</sup> Glucose in 25 mL acetonitrile (ACN) or user could use less amount of the probe to make desired concentration stock solution.

2. Tris Solution prepare (#1 stock solution): Weight 10 mmol of Tris-HCl and dissolve in

1L of Millipore water. The solution should be around pH 10.2 and ready to use.

3. Solution preparation for glucose detection (#2 stock solution): Blending 1.78 mL of

#1 stock solution (pH 10.0), 20  $\mu$ L GOx stock solution (200 U/mL) and 200  $\mu$ L AIE<sup>TM</sup> Glucose stock solution in a cuvette.

#### Before Your Experiment, You might NEED

| 1 Acetonitrile ( <u>Link</u> )         | 2 GOx ( <u>Link</u> )               | 3 TRIS ( <u>Link</u> )        |
|----------------------------------------|-------------------------------------|-------------------------------|
| 4 Fluorescence Cuvette ( <u>Link</u> ) | 5 Hydrochloric Acid ( <u>Link</u> ) | 6 Milli-Q Water (or DI water) |

#### **Protocol (Recommended)**

| Glucose Detection         | 1. Measure blank solution (#2 stock solution) fluorescent intensity at 540 nm and                                                                                                |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                           | record as $I_{o}$ . Then proceed to add your sample as following steps.                                                                                                          |  |
|                           | 2. Adding certain amount (e.g., $20 \mu$ L) of sample into your initial fluorescent intensity                                                                                    |  |
|                           | measured #2 stock solution                                                                                                                                                       |  |
|                           | 3. Incubate your sample solution at 37 $^{\circ}$ C for 40 minutes.                                                                                                              |  |
|                           | <ul> <li>For serum samples, we recommend adding 20 μL of serum and record the dilution</li> </ul>                                                                                |  |
|                           | ratio, i.e., 100; if the volume of sample is more than 20 $\mu$ L, further experiments                                                                                           |  |
|                           | are needed to conduct for a changed calibrated curve.                                                                                                                            |  |
|                           | 4. Take your sample out from incubator and measure again for fluorescent intensity                                                                                               |  |
|                           | at 540 nm and record it as <i>I</i> .                                                                                                                                            |  |
| Glucose<br>Quantification | 1. Calculate the intensity enhancement ratio of $I/I_0$ .                                                                                                                        |  |
|                           | 2. Obtaining the glucose concentration according to the working curve.                                                                                                           |  |
| ✤ $y = 0.04x + 1.059$     |                                                                                                                                                                                  |  |
|                           | 3. Where y equals to $I/I_0$ and x is glucose concentration.                                                                                                                     |  |
|                           | 4. Multiply the glucose concentration got above by the dilution ratio, obtaining the real glucose concentration.                                                                 |  |
| Note                      | If your x value is higher than 200 $\mu$ M, the value is not suitable for the above quantification method. We strongly recommend you to further dilute your sample for accuracy. |  |
| Reference                 |                                                                                                                                                                                  |  |
|                           |                                                                                                                                                                                  |  |

Song, Z.; Kwok, R. T. K.; Ding, D.; Nie, H.; Lam, J. W. Y.; Liu, B.; and Tang, B. Z. "An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose" Chemical Communications 2016, 52, 10076.

2. Optical information and suggested storage conditions:

1.

| Item                                                            | Ex/Em      | Qty     | Storage Condition*                                                                            |  |  |
|-----------------------------------------------------------------|------------|---------|-----------------------------------------------------------------------------------------------|--|--|
| AIE™ Glucose                                                    | 375/540 nm | 10 µmol | <ul> <li>≤-20 C (Upon receive this product)</li> <li>Avoid Light</li> <li>Keep Dry</li> </ul> |  |  |
| * Remember to warm up to room temperature upon opening the vial |            |         |                                                                                               |  |  |