I. INTRODUCTION

Catalog Number: M00199

Cell Line Name: CHO-K1/NK1

Gene Synonyms: TACR1, SPR, NK1, NKIR, TAC1R

Expressed Gene: GenBank Accession Number NM_001058; no expressed tags

Host Cell: CHO-K1

Quantity: Two vials of frozen cells (3×10^6 per vial)

Stability: 16 passages

Applications: Functional assays for NK1 receptors

Freeze Medium: 45% culture medium, 45% FBS, 10% DMSO

Complete Growth Medium: Ham’s F12, 10% FBS

Culture Media: Ham’s F12, 10% FBS, 400 μg/ml G418

Mycoplasma Status: Negative

Storage: Liquid nitrogen immediately upon delivery

II. BACKGROUND

Tachykinins are peptides sharing the common C-terminal amino acid sequence Phe-X-Gly-Leu-Met-NH₂. This neuropeptide family is composed of substance P, neurokinin A, and neurokinin B, which are widely distributed in mammalian central and peripheral nervous systems. It plays a role as both a neurotransmitter and a neuromodulator. Their actions are mediated by binding with three distinct receptors, namely, NK1, NK2, and NK3. NK1 has high affinity with substance P. In the CNS, NK1 has been implicated to play a role in regulating neuronal survival and degeneration. In the cardiovascular system, NK1 mediates endothelium-dependent vasodilatation and plasma protein extravasations. In the gastrointestinal system, NK1 receptors mediate intestinal motility, secretion, and vascular functions. SP-NK1 receptor communication is also involved in glioma development and progression. NK1 receptor antagonists may have several therapeutic applications in diseases mediated by tachykinins, such as pulmonary disorders, gut disorders, and the pathophysiology of depression.
III. REPRESENTATIVE DATA

Concentration-dependent stimulation of intracellular calcium mobilization by Substance P in CHO-K1/NK1 and CHO-K1 cells

Figure 1. Substance P-induced concentration-dependent stimulation of intracellular calcium mobilization in CHO-K1/NK1 and CHO-K1 cells. The cells were loaded with Calcium-4 prior to stimulation with an NK1 receptor agonist, Substance P. The intracellular calcium change was measured by FlexStation. The relative fluorescent units (RFU) were plotted against the log of the cumulative doses (5-fold dilution) of Substance P (Mean ± SD, n = 2). The EC$_{50}$ of Substance P on NK1 in CHO-K1 cells was 0.22 nM. The S/B of Substance P on NK1 in CHO-K1 cells was 39.

Notes:
1. EC$_{50}$ value is calculated with four parameter logistic equation:
   \[ Y = Bottom + \frac{(Top - Bottom)}{(1 + 10^{(\log EC_{50} - X) \times \text{HillSlope})}) } \]
   X is the logarithm of concentration.
   Y is RFU and starts at Bottom and goes to Top with a sigmoid shape.
2. Signal to background Ratio (S/B) = Top/Bottom

IV. THAWING AND SUBCULTURING

Thawing Protocol
1. Remove the vial from liquid nitrogen tank and thaw cells quickly in a 37°C water-bath.
2. Just before the cells are completely thawed, decontaminate the outside of the vial with 70% ethanol and transfer the cells to a 15 ml centrifuge tube containing 9 ml of complete growth medium.
3. Pellet cells by centrifugation at 200 x g force for 5 min, and remove the medium.
4. Resuspend the cells in complete growth medium.
5. Transfer the cell suspension to a 10 cm dish with 10 ml of complete growth medium.
6. Grow the cells in incubator with 37°C, 5 %CO$_2$.
7. In the following day, replace the cells with fresh medium contains antibiotic.

Sub-culturing Protocol
1. Remove the culture medium from cells.
2. Wash cells with PBS (pH=7.4) to remove all traces of serum that contains trypsin inhibitor.
3. Add 2.0 ml of 0.05% (w/v) Trypsin- EDTA (GIBCO, Cat No. 25300) solution into 10 cm dish and observe the cells under an inverted microscope until cell layer is dispersed (usually within 3 to 5 minutes).
   Note: To avoid cells clumping, do not agitate the cells by hitting or shaking the dish while waiting for the cells detach.
   If cells are difficult to detach, please place the dish in 37°C incubator for ~2 min.
4. Add 6.0 to 8.0 ml of complete growth medium into dish and aspirate cells by gently pipetting.
5. Centrifuge the cells at 200 x g force for 5 min, and remove the medium.
6. Resuspend the cells in culture medium and add the cells suspension to new culture dish.
7. Grow the cells in incubator with 37°C, 5 %CO₂.

Subcultivation Ratio: 1:3 to 1:8 weekly.
Medium Renewal: Every 2 to 3 days

V. REFERENCES
Limited Use License Agreement

This is a legal agreement between you (Licensee) and GenScript USA Inc. governing use of GenScript's stable cell line products and protocols provided to licensee. By purchasing and using the stable cell line, the buyer agrees to comply with the following terms and conditions of this label license and recognizes and agrees to such restrictions:

1) The products are not transferable and will be used at the site where they were purchased. Transfer to another site owned by buyer will be permitted only upon written request by buyer followed by subsequent written approval by GenScript.

2) The purchaser cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party.

3) The products sold by GenScript are for laboratory and animal research purposes only. The products are not to be used on humans, for consumption, or for any unlawful uses.

GenScript USA Inc. will not assert against the buyer a claim of infringement of patents owned or controlled by GenScript USA Inc. and claiming this product based upon the manufacture, use or sale of a clinical diagnostic, therapeutic and vaccine, or prophylactic product developed in research by the buyer in which this product or its components has been employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on the use of this product for other purposes, contact Marketing Department, GenScript USA Inc., 120 Centennial Avenue, Piscataway, New Jersey 08840, U.S.A. Phone: 1-732-885-9188. Fax: 1-732-210-0262. Email: marketing@genscript.com.