Toll-Like Receptors (TLRs)

www.novusbio.com

JOVUS IOLOGICALS Today's Research. Tomorrow's Discovery.

NOVUS Biologicals & Innate Immunity: The Story Toll'd

pathogens.

NB100-56563

IHC-P: small intestine

NB100-56566

TLR1

The Toll-like receptor (TLR) story 'Toll'd' could be said to have begun in 1985 with the discovery of proteins inducing dorsal-ventral development during Drosophila embryogenesis. These proteins were termed 'Toll' from the German for 'weird' because flies lacking Toll developed in a weird way.

The discovery of Toll sparked a new age in immunology during the 1990's when mammalian homologues, TLRs, were discovered and found to be essential for innate immunity. It is now being increasingly recognized that TLRs have far reaching roles beyond initial innate immune responses, including bridging innate and adaptive immunity as well as linking inflammation and disease.

Novus Biologicals is proud to have the most comprehensive portfolio of highly validated and published TLR products including antibodies, ligands, inhibitors, and engineered stable cell lines. O'Neill et al. Nat Rev. 13:453-460 (2013).

TLR and NFkB Signaling Peptide Inhibitors

Cell permeable peptide inhibitors are research tools for manipulating signal transduction pathways by blocking signaling events through decoy mechanisms.

What is a decoy? A decoy is a realistic replica used as a lure or bait.

Each inhibitory peptide employs a specific decoy mechanism based on its amino acid sequence that blocks the propagation of downstream signaling events. The peptides also have a cell permeable translocation sequence which enable the peptides to passively enter into the cell. Control peptides contain the translocation, but not inhibitory, sequence.

INHIBITORS	CAT. NO.	DECOY	INHIBITOR SEQUENCE	INHIBITOR MECHANISM	SIGNALING BLOCK
IKK-gamma	NBP2-26504	IKK-alpha/IKK-beta	IKK-alpha/IKK-beta consensus binding	Binds to IKK- gamma	IKK complex formation
MyD88	NBP2-29328	MyD88	MyD88 TIR homodi- merization domain	Binds to MyD88	MyD88 homodi- merization
NFkB p65 (pSer276)	NBP2-26505	p65 unphosphorylated Ser276 site	p65 Ser276 phosphor- ylation consensus site	Ser site becomes phosphorylated	p65 Ser276 phosphorylation
NFkB p65 (pSer529/536)	NBP2-29321	p65 unphosphorylated Ser529/536 site	p65 Ser529/536 phosphorylation consensus site	Ser site becomes phosphorylated	p65 Ser529/536 phosphorylation
NFkB p150/p50	NBP2-29323	p50 unmasked NLS	p50 NLS	Prevents p50 NLS unmasking	p50 nuclear translocation
TIRAP (TLR2 and TLR4)	NBP2-29331	TIRAP	TIRAP TIR domain	Binds to TLR2/TLR4 TIR domains	TIRAP-TLR2 and TIRAP-TLR4 interactions
TIRAP (TLR2 and TLR4)	NBP2-26245	TIRAP	TIRAP TIR domain	Binds to TLR2/TLR4 TIR domains	TIRAP-TLR2/TLR1 and TIRAP-TLR4 but not TIRAP-TLR2/TLR6 interactions
VIPER (TLR4)	NBP2-26244	A46 vaccinia viral protein/TIRAP	A46 TIR binding domain	Binds to TLR4 TIR domain	TIRAP-TLR4 and TRAM-TLR4 interactions

Example: Inhibition of LPS-Mediated TLR4 Activation with VIPER

A. VIPER (TLR4) Inhibitor Peptide Set

- TLR4-TIRAP and TLR4-TRAM TIR-TIR interactions: critical for mediating TLR4 signaling interactions and activating downstream signaling pathways, thereby resulting in inflammatory responses
- VIPER inhibitory peptide sequence: KYSFKLILAEYRRRRRRRR
- A46 vaccinia viral protein TLR4 TIR domain binding **sequence**, a.k.a. A46 or TIRAP/TRAM
- TIR domain 'decoy' sequence. Binds to TLR4 and blocks TLR4-TIRAP and TLR-TRAM
- **TIR-TIR** interactions Blocks downstream signaling pathways dependent on
- **TIR-TIR** interactions Protein transduction sequence for cell permeability,
- Control peptide with scrambled **sequence**:
- RNTISGNIYSARRRRRRRR

scrambled **sequence**

TLR4/MD2/CD14 NFkB-SEAP stably transfected reporter cells (NBP2-26503) were plated in 96-well plates at 1x10⁵ cells/well. After 16 h, cells were preincubated with increasing concentrations of VIPER or control (CP7) peptides (A) for 1 h.

Cells were then stimulated with 10 ng/ml LPS (NBP2-25295) for 24 h. Secreted alkaline phosphatase (SEAP), an indication of NFkB activation in the NFkB-SEAP reporter cell lines (B), was analyzed using the SEAP Reporter Assay Kit (NBP2-25285).

VIPER had a dose-dependent inhibitory effect on LPS-mediated TLR4 activation (C) which was used to calculate the IC_{50} of VIPER (D).

Lingo in the TLR Field

Adaptive immune system: acquired immune defense **Bridging:** TLR's participation the adaptive immune response **Cross-talk:** communication between multiple signaling pathways DAMP: damage-associated molecular pattern Downstream signaling: responses propagated from receptor activation Innate immune system: first line of immune defense Myddosome: signaling complex containing MyD88 **MyD88:** myeloid differentiation primary response gene (88) NEMO: NFkB essential modulator or IKK gamma NFkB: nuclear factor kappa-light-chain enhancer of activated B cells **PAMP:** pathogen-associated molecular patterns **PRR:** pattern recognition receptor SARM: Sterile-alpha and armadillo motif containing protein **TIR:** Toll/interleukin-1 receptor homology domain TIRAP: Toll/interleukin-1 receptor (TIR) domain containing adaptor protein **TLR:** Toll-like receptor

TRAM: TRIF-related adaptor molecule

TLR/NFkB SEAP Cell Lines & Ligands

TLR	SEAPORTER™ CELL LINE	LIGANDS	
Control	NBP2-26260		
TLR1		Pam3CSK4	NBP2-25297
TLR2	NBP2-26274	Histone	NBP2-26236
		MALP-2	NBP2-26219
		Pam3CSK4	NBP2-25297
		Zymosan	NBP2-26233
TLR3	NBP2-26275	Poly (I:C)	NBP2-25288
TLR4	NBP2-26503	LPS	NBP2-25295
TLR5	NBP2-26277	Flagellin	NBP2-25289
TLR6		MALP-2	NBP2-26219
TLR7	NBP2-26278	R837	NBP2-26228
		R848	NBP2-26231
TLR8	NBP2-26279	R848	NBP2-26231
TLR9	NBP2-26280	CpG ODN	NBP2-26238
TLR10	NBP2-26273		
TLR11	NBP2-26289		
TLR12	NBP2-26288		
TLR13	NBP2-26290		

TRIF: TIR-domain-containing adapter-inducing interferon beta

IHC-P: skin

TLR4

IHC-P: skin

TLR10 NBP2-27243

FLOW: PBMC

TLR Screening Pack, Cell Surface NBP2-25086

IHC-P: colon

Email

Web:

U.S. AND INTERNATIONAL CUSTOMERS 303.730.1950 888.506.6887

303.730.1966 orders@novusbio.com www.novusbio.com

CANADIAN CUSTOMERS

905.827.6400 Phone 855.668.8722 Phone: 905.827.6402 Email canada@novusbio.com Web: www.novusbio.com/canada

Plasma Membrane

TLRs

Plasma Membrane TLRs: recognize molecu-

lar components localized on the surface of

TLR4 (Tyr674) NBP2-24935

WB: TLR4-Y674 partial protein

TLR6 NB100-56536

IHC-P: tonsil

TLR Screening Pack NBP2-25083

IF: TLR7 on colon

WB: various tissues

TLR Screening Pack, Intracellular NBP2-25085

FLOW: TLR9 in PBMC

EUROPEAN CUSTOMERS NOVUS EUROPE Phone: +44 (0)1223 426001 Fax: +44 (0)871 971 1635 Email: europe@novusbio.com

NOVUS BELGIUM Phone: +32 2 401 22 53 Fax: +32 2 401 22 54

TLR Adaptor* & **Accessory Proteins**

TLR Adaptor and Accessory Proteins: essential roles in TLR folding, ligand recognition, activation, and subcellular localization.

FLOW: monocytes

0⁰ 10¹ 10² 10³

IHC-P: gastric tumor

MyD88*

FLOW: Jurkat

TICAM2 (TRAM)* NBP2-24638

TRIF* NB120-13810

IHC-P: brain

NOVUS IRELAND Phone: +353 1 506 0361 Fax: +353 1 506 0362

NOVUS NETHERLANDS Phone: + 31 2 07168336 Fax: +31 2 07168337 Email: netherlands@novusbio.com

Endosomal

TLRs

Endosomal TLRs: mediate the recognition

TLR3 (Tyr759)

NBP2-24904

of DNA and RNA from pathogens.

TLR7 NBP2-27332

TLR3

NBP2-24875

FLOW: monocytes

TLR9 NBP2-24729

IHC-P: spleen

TLR12

MW (kDa) 200 -

116 =

66 -

44 -

29 -

NBP2-24833

18.4— 14— 6—

FLOW: TLR3 in PBMC

NOVUS FINLAND

NOVUS FRANCE

Phone: +358 9 231 954 48

Email: finland@novusbio.com

Phone: +3<u>3 1 76 77 45 30</u>

Email: france@novusbio.com

Phone: +49 0800 723 5208

Email: germany@novusbio.com

Fax: +49 0800 58926 79

Fax: +33 1 76 77 45 31

NOVUS GERMANY

Fax: +358 9 231 954 49

Email: belgium@novusbio.com

NOVUS DENMARK Phone: +45 36 92 78 17 Fax: +45 36 92 78 18 Email: denmark@novusbio.com

IHC-F: tonsil TLR8 NBP2-24917

IHC-P: spleen

TLR11

FLOW: splenocytes

NBP2-24539

FLOW: TLR13 stable

TLR Intracellular

Flow Assay Kit

cell line

TLR13

www.novusbio.com