PRODUCT INFORMATION

GENERAL INFORMATION

Product Name:
Code No. :
Size : $\quad 15 \mu$ g (lyophilized plasmid contains salt of TE buffer)
Storage : This product is shipped at ambient temperature. Upon receipt, store at - $20{ }^{\circ} \mathrm{C}$
Reconstitution : Resuspend the lyophilized pETBK with $15 \mu 1$ of sterile water to make $1 \mu \mathrm{~g} / \mu \mathrm{l}$ plasmid in $1 \times \mathrm{TE}$ buffer. After reconstitution, store at $-20^{\circ} \mathrm{C}$

Product Description : pETBK is a medium copy number, kanamycin resistant, T7 bacterial expression vector. The T7 expression system is one of the strongest expression systems and has been widely used with a coupling of BL21 (DE3) E. coli strain. T7 RNA polymerase gene is integrated in a genome of BL21(DE3) under control of lacUV5 promoter. Upon addition of isopropyl-1-thio- β-D-galactopyranoside (IPTG), T7 RNA polymerase is expressed in the BL21(DE3) cells harboring pETBK vector, and it induces a high-level protein expression from T7 promoter of pETBK. BioDynamics Laboratory Inc. offers several kinds of T7 bacterial expression vectors. Among them, pETBK is standard kanamycinresistant vector for a high level expression of proteins.

T7 promoter :	$171-187$
T7 transcription start :	188
His Tag :	$263-280$
T7 terminator :	$456-503$
pMB1 ori :	$1660-2279$
Km :	$703-1518$

Features of T7 expression vectors

BioDynamics Laboratory Inc. provides 6 kinds of T7 expression vectors, pETUA, pETBA, pETIA, pETUK, pETBK, and pETIK. These vectors have the same multicloning site and specific feature of each vector is below:

	Plasmid copy number	Replicon	Antibiotic resistance	Feature and recommendation
pETUA	high copy	pUC	ampicillin	for non-toxic protein expression
pETBA	medium copy	pMB1	ampicillin	general expression
pETIA	medium copy	pMB1	ampicillin	stringent regulation with lac repressor
pETUK	high copy	pUC	kanamycin	for non-toxic protein expression
pETBK	medium copy	pMB1	kanamycin	general expression
pETIK	medium copy	pMB1	kanamycin	stringent regulation with lac repressor

BioDynamics Laboratory Inc.

PRODUCT INFORMATION

pETBK Sequence

CAGACGTTTT GCAGCAGCAG TCGCTTCACG TTCGCTCGCG TATCGGTGAT TCATTCTGCT
60 AACCAGTAAG GCAACCCCGC CAGCCTAGCC GGGTCCTCAA CGACAGGAGC ACGATCATGC 120 GCACCCGTGG CCAGGACCCA ACGCTGCCCG AGATCTCGAT CCCGCGAAAT TAATACGACT 180 CACTATAGGG AGACCACAAC GGTTTCCCTC TAGAAATAAT TTTGTTTAAC TTTAAGAAGG 240 AGATATACAT ATGCGGGGTT CTCATCATCA TCATCATCAT GGTATGGCTA GCATGACTGG 300 TGGACAGCAA ATGGGTCGGG ACGATGACGA TAAGGATCCC CGGGTACCGA GCTCGAATTC 360 GATTTCGTCG ACAAGCTTAG CGGCCGCCGT TTAATCCGGC TGCTAACAAA GCCCGAAAGG 420 AAGCTGAGTT GGCTGCTGCC ACCGCTGAGC AATAACTAGC ATAACCCCTT GGGGCCTCTA 480 AACGGGTCTT GAGGGGTTTT TTGCTGAAAG GAGGAACTAT ATCCGGATAA TGTCATGATA 540 ATAATGGTTT CTTAGACGTC AGgTGGCACT TTTCGGGGAA ATGTGCGCGG AACCCCTATT 600 TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA 660 ATGCTTATGT CTGCTTACAT AAACAGTAAT ACAAGGGGTG TTATGAGCCA TATTCAACGG 720 GAAACGTCTT GCTCAAGGCC GCGATTAAAT TCCAACATGG ATGCTGATTT ATATGGGTAT 780 AAATGGGCTC GCGATAATGT CGGGCAATCA GGTGCGACAA TCTATCGATT GTATGGGAAG 840 CCCGATGCGC CAGAGTTGTT TCTGAAACAT GGCAAAGGTA GCGTTGCCAA TGATGTTACA 900 GATGAGATGG TCAGACTAAA CTGGCTGACG GAATTTATGC CTCTTCCGAC CATCAAGCAT 960 TTTATCCGTA CTCCTGATGA TGCATGGTTA CTCACCACTG CGATCCCAGG GAAAACAGCA 1020 TTCCAGGTAT TAGAAGAATA TCCTGATTCA GGTGAAAATA TTGTTGATGC GCTGGCAGTG 1080 TTCCTGCGCC GGTTGCATTC GATTCCTGTT TGTAATTGTC CTTTTAACAG CGATCGCGTA 1140 TTTCGTCTCG CTCAGGCGCA ATCACGAATG AATAACGGTT TGGTTGATGC GAGTGATTTT 1200 GATGACGAGC GTAATGGCTG GCCTGTTGAA CAAGTCTGGA AAGAAATGCA TAAGCTATTG 1260 CCATTCTCAC CGGATTCAGT CGTCACTCAT GGTGATTTCT CACTTGATAA CCTTATTTTT 1320 GACGAGGGGA AATTAATAGG TTGTATTGAT GTTGGACGAG TCGGAATCGC AGACCGATAC 1380 CAGGATCTTG CCATCCTATG GAACTGCCTC GGTGAGTTTT CTCCTTCATT ACAGAAACGG 1440 CTTTTTCAAA AATATGGTAT TGATAATCCT GATATGAATA AATTGCAGTT TCATTTGATG 1500 CTCGATGAGT TTTTCTAATT AAAACATATA TACTTTAGAT TGATTTAAAA CTTCATTTTT 1560 AATTTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC 1620 GTGAGTTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG 1680 ATCCTTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCACCG CTACCAGCGG 1740 TGGTTTGTTT GCCGGATCAA GAGCTACCAA CTCTTTTTCC GAAGGTAACT GGCTTCAGCA 1800 GAGCGCAGAT ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA 1860 ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAGTG GCTGCTGCCA 1920 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC 1980 AgCGgTcGgg CTGAACGGGG GgTtcgTgCA CACAGCCCAG CTTGGAGCGA ACGACCTACA 2040 CCGAACTGAG ATACCTACAG CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA 2100 AgGCGgAcAg GTATCCGGTA AgCGGCAGGG TCGGAACAGG AgAGCGCACG AGGGAGCTTC 2160 CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC 2220 GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCGG 2280

BioDynamics Laboratory Inc.

PRODUCT INFORMATION

CCTTTTTACG GTTCCTGGCC TTTTGCTGGC CTTTTGCTCA CATGTTCTTT CCTGCGTTAT 2340
CCCCTGATTC TGTGGATAAC CGTATTACCG CCTTTGAGTG AGCTGATACC GCTCGCCGCA 2400
GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CTGATGCGGT 2460
ATTTTCTCCT TACGCATCTG TGCGGTATTT CACACCGCAT ATATGGTGCA CTCTCAGTAC 2520
AATCTGCTCT GATGCCGCAT AGTTAAGCCA GTATACACTC CGCTATCGCT ACGTGACTGG 2580
GTCATGGCTG CGCCCCGACA CCCGCCAACA CCCGCTGACG CGCCCTGACG GGCTTGTCTG 2640
CTCCCGGCAT CCGCTTACAG ACAAGCTGTG ACCGTCTCCG GGAGCTGCAT GTGTCAGAGG 2700
TTTTCACCGT CATCACCGAA ACGCGCGAGG CAGCTGCGGT AAAGCTCATC AGCGTGGTCG 2760
TGAAGCGATT CACAGATGTC TGCCTGTTCA TCCGCGTCCA GCTCGTTGAG TTTCTCCAGA 2820
AGCGTTAATG TCTGGCTTCT GATAAAGCGG GCCATGTTAA GGGCGGTTTT TTCCTGTTTG 2880
GTCACTGATG CCTCCGTGTA AGGGGGATTT CTGTTCATGG GGGTAATGAT ACCGATGAAA 2940
CGAGAGAGGA TGCTCACGAT ACGGGTTACT GATGATGAAC ATGCCCGGTT ACTGGAACGT 3000
TGTGAGGGTA AACAACTGGC GGTATGGATG CGGCGGGACC AGAGAAAAAT CACTCAGGGT 3060
CAATGCCAGC GCTTCGTTAA TACAGATGTA GGTGTTCCAC AGGGTAGCCA GCAGCATCCT 3120
GCGATGCAGA TCCGGAACAT AATGGTGCAG GGCGCTGACT TCCGCGTTTC CAGACTTTAC 3180
GAAACACGGA AACCGAAGAC CATTCATGTT GTTGCTCAGG TCG 3223

PRODUCT INFORMATION

PRODUCT USAGE

Cloning of a gene to pETBK:

Below is the multiple cloning site of pETBK. To express a recombinant protein correctly, it is necessary to clone the gene of interest in frame with an N-terminal peptide of pETBK. The start codon of pETBK is boxed ATG in the below figure. Digest pETBK completely with appropriate restriction enzyme(s) to form DNA ends which can be ligated to the gene of interest. If only one restriction enzyme is used, dephosphorylation of a vector is often performed. Ligation of processed pETBK and the gene of interest can be performed by the standard procedure. The following transformation procedure should be done with non-expression hosts such as DH5 α or JM109. In the transformation, recombinant cells should be selected on LB agar plates containing $15-25 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin., because higher concentration of kanamycin often retarded cell growth on the agar plates. Recombinant plasmids derived from pETBK are selected by colony-PCR, enzyme digestion of prepared plasmids, or other methods. Sequencing of cloning portion and an insert region on the obtained plasmid is recommended to determine the correct recombinant plasmids for expression experiments.

T7 promoter XbaI

EK: Enterokinase recognition sequence (AspAspAspAspLys \downarrow)
ATG: start codon TAA : stop codon

PRODUCT INFORMATION

Protein Expression Procedure :

The following protocol is a general guide for the protein expression by using T 7 expression vectors, pETUA, pETBA, pETIA, pETUK, pETBK, and pETIK, coupling with an expression host E. coli cell, BL21(DE3) cells or BL21(DE3)pLysS cells.

- Before starting:

Transform BL21(DE3) or BL21(DE3)pLysS cells with the prepared expression plasmid by the standard procedure. If kanamycin is used for selection, recombinant cells should be selected on LB agar plates containing $15-25 \mu \mathrm{~g} / \mathrm{ml}$ of kanamycin, because a higher concentration of kanamycin often retards cell growth on the agar plates.

\ddagger Notes for transformation

1. Sometimes, expression may vary among transformants. If large and small colonies are observed in the same plate, the expressed protein may affect the growth of the E. coli cells.
2. If the expressed protein is toxic to E. coli cells, transformants may not be obtained.

In this case, repression of a basal level expression by T7 promoter may work, see "Notes for expression."

- Expression:

1. Following transformation, pick a colony and inoculate it into 3 ml of LB medium containing the appropriate antibiotic (kanamycin is often used at $25-30 \mu \mathrm{~g} / \mathrm{ml}$ for liquid culture) with shaking at $37^{\circ} \mathrm{C}$, overnight. For the BL21(DE3)pLysS strain, it is preferable to add chloramphenicol at a final concentration of $34 \mu \mathrm{~g} / \mathrm{ml}$ in the overnight culture to maintain pLysS.
2. The next morning, transfer 0.5 ml of the overnight culture to a new 10 ml of LB medium containing the appropriate antibiotic to select the expression plasmid. Grow the culture with shaking at $37^{\circ} \mathrm{C}$ until the OD_{600} reaches 0.5 (approximately 2 hrs but this depended on the expression plasmids).

When using BL21(DE3)pLys, chloramphenicol is not usually required in the short-period culture.
3. When the OD_{600} reaches 0.5 , transfer an aliquot (e.g., 1 ml) of the culture to a new centrifuge tube and centrifuge it to harvest cells. Store the cells at $-80^{\circ} \mathrm{C}$ until analysis.
Add IPTG to a final concentration of 1 mM to the rest of the culture and grow the culture with shaking at $37^{\circ} \mathrm{C}$ for 3 hours.
The IPTG concentration and induction time are general values. It is recommended to determine the optimal condition for the target gene expression.
4. After the induction, harvest the cells. To analyze the expression, before harvesting the cells, transfer an aliquot of the culture (e.g., 1 ml) and centrifuge it to precipitate the cells.

- Analysis

1. Suspend the precipitated cells (from the 1 ml culture) in $200 \mu \mathrm{l}$ of $1 \times$ PBS buffer.
2. Mix an aliquot of the suspension (e.g., $100 \mu \mathrm{l}$) with an equal volume of $2 \times$ SDS sample buffer.
3. Heat the mixture at $85^{\circ} \mathrm{C}$ for 5 min , then centrifuge at $10,000 \mathrm{~g}$ for 10 min . Subject the supernatant (e.g., $5-25 \mu \mathrm{l}$) to SDS-PAGE. Western blot will help analyzing the expression of the target protein.
$\cdot 2 \times$ SDS sample buffer : 2% sodium dodecyl sulfate, $5 \% 2$-mercaptoethanol, 20% glycerol, 0.02 \% BPB, 62.5 mM Tris- $\mathrm{HCl}, \mathrm{pH} 6.8$

- $1 \times$ PBS buffer.: 20 mM sodium phosphate, 150 mM sodium chloride, pH 7.4

BioDynamics Laboratory Inc.

An arrow shows the expressed 65 KDa proteins.

Figure of protein expression from pETBK
A gene of 65 KDa protein was cloned into pETBK (pETBK/65K). BL21(DE3) cell was transformed with the pETBK/65K, six colonies were picked and followed the "Protein Expression Procedure" as above. After induction, aliquot of the cells from each culture was subjected to 10% polyacrylamide gel SDS electrophoresis. The gel was stained with Quick Blue Protein Staining Solution (BioDynamics Laboratory Inc. \#DS500).
Lane 1: DynaMarker Protein Eco (\#DM610)
Lane 2 : BL21(DE3) harboring pETBK but not pETBK/65K
Lane 3-8 : BL21(DE3) cells, clones 1-6

\ddagger Notes for expression:

1. As the T7 expression method is a high-level protein expression system, some basal level expression of the target protein will occur in uninduced cells. This is likely problematic in cases in which the target protein is toxic to E. coli. cells. In this case, it may be necessary to decrease the basal level expression as follows:
a) Use a lower-copy number T7 expression vector, pETBA, pETBK, but not pETUA, pETUK
b) Use a stringent regulated expression vector, pETIA, pETIK.
c) Use liquid medium and agar plates supplemented with glucose (0.5-1 \%).

Glucose is known to decrease a basal expression from lacUV5 promoter ${ }^{2}$.
d) Use BL21(DE3)pLysS strain but not BL21(DE3) strain.

The T7 Lysozyme encoded in a pLysS plasmid reduces the basal level of T7 RNA polymerase Expression ${ }^{3)}$. This leads to suppression of the basal level expression of the target protein.
2. When expressing proteins in BL21(DE3) cells, if it takes a longer time (5 hrs or more) to reach 0.5 at OD_{600} after inoculating the overnight culture $(0.5 \mathrm{ml})$ to a new LB medium $(10 \mathrm{ml})$, the expressed protein is likely toxic to E. coli cells.
3. When BL21(DE3) cells lyse after induction with IPTG, the expressed protein is likely toxic to E. coli cells.

PRODUCT INFORMATION

Reference:

1) Studier, F.W. and Moffatt, B.A., J. Mol. Biol. 189 (1986) 113-130.
2) Pan, S. and Malcom, B.A., BioTechniques 29 (2000), 1234-1238
3) Moffatt, B.A. and Studier, F.W., Cell 49 (1987) 221-227

General reference in this Product Information
Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Related Products:

DV210	pET Expression Vector pETBA	DV215	pET Expression Vector pETIA
DV220	pET Expression Vector pETUK	DV230	pET Expression Vector pETBK
DV235	pET Expression Vector pETIK	DS110	DNA Ligation Kit ver. 2
DS210	Competent Cell JM109	DS220	Competent Cell DH5 α
DS225	Jet Competent Cell (DH5 α)	DS240	Competent Cell BL21
DS255	Zip Competent Cell BL21(DE3)	DS260	Competent Cell BL21(DE3)pLysS
DS500	QuickBlue Protein Staining Solution		

- Purchaser Notification

This product is manufactured based on the T7 expression system which is the subject of US patent applications assigned to Brookhaven Science Associates, LLC (BSA). The product must be used only outside the United States and its territories. Neither this product nor materials prepared used by the T7 expression system are allowed to be distributed in the US and its territories without license of BSA. Information about license regarding the T7 expression system may be obtained from the Office of Intellectual Property and Sponsored Research, Brookhaven National Laboratory, Building 185, P.O. Box 500, Upton, New York 11973-5000, USA.

