INSTRUCTIONS

5-Iodoacetamidofluorescein (5-IAF)

46120

Number Description
46120 5-Iodoacetamidofluorescein (5-IAF), 25 mg

Molecular Weight: 515.26
Excitation Wavelength: 490-495 nm
Emission Wavelength: 515-520 nm (green)
Molar Extinction Coefficient at 492 nm: 80,000-85,000 M⁻¹ cm⁻¹
Formula: C₂₂H₁₄INO₆
CAS # 63368-54-7
CAS Name: acetamide, N-(3’,6’-dihydroxy-3-oxospiro(isobenzofuran-1(3H), 9’-(9H)xanthen)-5-yl)-2-iodo
Physical form and color: solid, yellow-orange
Solubility: Soluble in dimethylformamide (DMF) and aqueous buffers above pH 6

Storage: Upon receipt store product at -20°C protected from light. Product is shipped at ambient temperature.

Introduction

5-Iodoacetamidofluorescein (5-IAF) is a fluorescein derivative that contains an iodoacetamido group (Figure 1) for labeling proteins, peptides and other biomolecules. Iodoacetamides primarily react with sulfhydryl groups to form stable thioether bonds at physiological pH and at room temperature or below. If free sulfhydryls are not present, iodoacetamides can react with methionine, histidine, or potentially tyrosine. At pH < 8, most aliphatic amines are protonated and nonreactive to iodoacetamides. 5-IAF is soluble in buffers at pH > 6 and has been widely used as a tracer in living cells and in the study of the structural properties, diffusion and interactions of proteins, especially in muscle. 5-IAF has been conjugated to many different proteins including actin, myosin, troponin, hemoglobin, and thiol-containing proteins in SDS gels.

Important Product Information

- Store product in the original container at -20°C protected from light. Equilibrate vial to room temperature before opening to avoid moisture condensation onto the product. 5-IAF is unstable in light, especially in solution. Prepare this reagent immediately before use. Do not store this reagent in aqueous solutions.
- 5-IAF reacts with free –SH group(s). Some sulfhydryl-containing peptides and proteins may oxidize in solution and form disulfide bonds, which cannot react. Disulfide bonds can be reduced to produce free sulfhydryls. The Reduce-Imm™ Reducing Kit (Product No. 77700) and Immobilized TCEP Disulfide Reducing Gel (Product No. 77712) enables peptide or protein reduction while recovering the sample in the absence of reducing agents.
- As an alternative to disulfide reduction, sulfhydryls can be introduced via amine modification using N-succinimidyl S-acetylthioacetate (SATA, Product No. 26102) or 2-iminothiolane•HCl (Traut’s Reagent, Product No. 26101).

Figure 1. Chemical structure of 5-Iodoacetamidofluorescein.

Warranty: Pierce products are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sale for products used, handled and stored according to Pierce instructions. Pierce’s sole liability for the product is limited to replacement of the product or refund of the purchase price. Pierce products are supplied for laboratory or manufacturing applications only. They are not intended for medicinal, diagnostic or therapeutic use. Pierce products may not be resold, modified for resale or used to manufacture commercial products without prior written approval from Pierce Biotechnology. Pierce strives for 100% customer satisfaction. If you are not satisfied with the performance of a Pierce product, please contact Pierce or your local distributor.
Example Procedure for IgG Reduction and Labeling

This protocol is an example application for 5-IAF and, therefore, specific applications will require optimization. In this method, whole IgG is reduced with 2-MEA, which cleaves disulfide bonds between antibody heavy chains while preserving those between heavy and light chains. During reduction, absolute concentration of 2-MEA is more critical than antibody concentration as 1-10 mg IgG can be effectively reduced with 50 mM of 2-MEA. This protocol can be modified for other disulfide-containing molecules.

Note: EDTA added to buffers prevents metal-catalyzed oxidation of sulfhydryls.

A. Materials Required
- 2-Mercaptoethylamine-HCl (2-MEA, Product No. 20408)
- Reducing Buffer: Prepare 1 ml of buffer by combining 100 µl of 1 M sodium phosphate pH 6.0, 5 µl of 0.5 M EDTA and 900 µl ultrapure water.
- Phosphate buffered saline (PBS): 0.1 M phosphate, 0.15 M NaCl, pH 7.2, such as BupH™ Phosphate Buffered Saline Packs (Product No. 28372) or other buffer at pH 6.5-7.5
- Conjugation Buffer: Add 20 µl of 0.5 M EDTA to 10 ml of PBS for each 10 ml of Conjugation Buffer needed.
- 37°C incubator or water bath
- Desalting column, such as D-Salt™ Dextran Desalting Columns (Product No. 43230) for removing 2-MEA. For removal of excess 5-IAF, either a desalting column or a Slide-A-Lyzer® Dialysis Cassette may be used.
- Dimethylformamide (DMF, Product No. 20673)
- IgG Solution: Dissolve 1-10 mg IgG in 1 ml of Reducing Buffer.

B. Reduction of IgG Disulfide Bonds
1. Add the 1 ml IgG Solution to a 6 mg vial of 2-MEA and gently shake vial to dissolve.
2. Incubate reaction for 90 minutes at 37°C.
3. Cool the solution to room temperature.
4. Remove 2-MEA from the reduced antibody using a Desalting Column equilibrated with Conjugation Buffer. After the antibody solution has entered the gel bed, add additional Conjugation Buffer and collect 500 µl fractions.
5. Determine antibody location by measuring the absorbance of each fraction at 280 nm. Pool fractions containing reduced antibody. Proceed immediately to Section C to minimize sulfhydryl oxidation.

C. Labeling of Reduced IgG
Note: Upon protein reduction or modification, for best results remove excess reducing or modification reagent by desalting before reacting with the 5-IAF.
1. Dissolve 1 mg 5-IAF in 100 µl of DMF. Determine the volume of 5-IAF needed for a 5- to 10-fold molar excess over IgG and add it to the tube containing the reduced IgG solution.
2. Mix the reaction well and allow it to proceed for 2 hours in the dark at room temperature.
3. Remove non-reacted 5-IAF from the antibody by desalting or dialysis.
4. Store labeled antibody protected from light at 4°C for up to one month. Alternatively, store labeled antibody in single-use aliquots at -20°C.
Example Procedure for Labeling Protein in the Presence of DTT

The following protocol, adapted from Gorman (1987), will require optimization for each protein. The protocol uses DTT to reduce disulfide bonds to produce free sulfhydryls followed by reaction with an excess of 5-IAF. Because the protocol uses an excess of 5-IAF over the DTT, removal of DTT is not necessary to achieve adequate conjugation.

1. Dissolve protein containing disulfide bonds at 5-10 mg/ml in 0.1 M NH₄HCO₃ containing 1% SDS and 20 mM dithiothreitol (DTT).
2. Incubate for 16 hours at 0°C or 2 hours at 22°C.
3. Add a 5-fold molar excess of 5-IAF over DTT. Incubate for 2 hours in the dark at 22°C.
4. Maintain the pH at 7.5-8.0 by adding 6 M NaOH as necessary. Typically, adding 2 µl per 100 mM of 5-IAF will adequately adjust the pH.
5. Precipitate protein by adding nine volumes of HPLC-grade methanol at -20°C. Collect protein by centrifuging at 4°C at 8,000 × g for 5 minutes.

Calculate the Degree of Labeling (F/P)

Note: Nonreacted dye must be completely removed for accurate determination of the dye-to-protein ratio (F/P).

1. Measure the absorbance of the protein:dye conjugate at 280 nm using a spectrophotometer cuvette that has a 1 cm path length. If initial absorbance measurement exceeds 2.0, dilute sample, or an aliquot thereof, by a factor necessary to obtain absorbance values less than 2.0. Record the dilution factor, which will be required in the calculation
2. Calculate molarity of the protein:
 - \(\varepsilon = \) protein molar extinction coefficient (e.g., the molar extinction coefficient of IgG is \(\sim 210,000 \) M\(^{-1}\) cm\(^{-1}\))
 - \(A_{\text{max}} = A_{491} \)
 - \(CF = \text{Correction factor} = \frac{A_{280}}{A_{\text{max}}} \); adjusts for the absorbance amount 5-IAF will have at 280 nm
 - \(\text{Note: if the sample amount is limited, a correction factor of 0.3 may be used for 5-IAF.} \)
 - \(\text{Protein concentration (M)} = \frac{A_{280} \times (A_{\text{max}} \times CF)}{\varepsilon} \times \text{dilution factor} \)
3. Calculate the degree of labeling:
 - \(\varepsilon' = \) 5-IAF molar extinction coefficient: use 82,000 M\(^{-1}\) cm\(^{-1}\)
 - \(\text{Moles dye per mole protein} = \frac{A_{\text{max}} \text{ of the labeled protein}}{\varepsilon'} \times \text{protein concentration (M)} \times \text{dilution factor} \)

Related Pierce Products

- 26101 Traut’s Reagent, 500 mg
- 26102 SATA (N-succinimidyl S-acetylthioacetate), 50 mg
- 26103 Hydroxylamine Hydrochloride, 25 g
- 77712 Immobilized TCEP Disulfide Reducing Gel, 5 ml
- 20291 No-Weigh™ Dithiothreitol (DTT), 48 × 7.7 mg microtubes
- 20408 2-Mercaptoethylamine•HCl, 6 × 6 mg
- 20490 TCEP•HCl, 1 g
- 77700 Reduce-Imm™ Reducing Kit, for simultaneous reduction and recovery of peptides
- 46200 DyLight™ 547 NHS Ester, 1 mg, for labeling at primary amino groups
- 46205 DyLight™ 647 NHS Ester, 1 mg, for labeling at primary amino groups
Additional Information

Please visit the Pierce web site for additional information relating to this product including the following items:

- Tech Tip: Calculate dye:protein (F/P) molar ratios
- Tech Tip: Protein stability and storage
- Tech Tip: An overview of dialysis
- Tech Tip: Extinction coefficients guide
- Tech Tip Protocol: Modify and label oligonucleotide 5’ phosphate groups

References

The most current versions of all product instructions are available at www.piercenet.com. For a faxed copy, contact customer service (in the USA call 800-874-3723) or your local distributor.