Enzyme Immunoassay for the Quantitative Determination of Mouse \(\alpha\)-Macroglobulin in Serum or Plasma

INTRODUCTION

\(\alpha\)-Macroglobulin is a serum proteinase inhibitor that consists of two major (Mr 163,000 and 35,000) and one minor (Mr 185,000) polypeptide chains. It is a negative acute phase reactant, the levels of which decrease in mouse serum or plasma as a result of inflammation. It has also been demonstrated that mouse \(\alpha\)-macroglobulin levels increase significantly with age, after gonadectomy and during pregnancy.

PRINCIPLE OF THE TEST

The mouse \(\alpha\)-macroglobulin ELISA is based on a solid phase enzyme-linked immunosorbent assay (ELISA). The assay uses affinity purified anti-mouse \(\alpha\)-macroglobulin antibodies for solid phase (microtiter wells) immobilization and horseradish peroxidase (HRP) conjugated anti-mouse \(\alpha\)-macroglobulin antibodies for detection. The test sample is diluted and incubated in the microtiter wells for 45 minutes. The microtiter wells are subsequently washed and HRP conjugate is added and incubated for 45 minutes. This results in \(\alpha\)-macroglobulin molecules being sandwiched between the immobilization and detection antibodies. The wells are then washed to remove unbound HRP-labeled antibodies and TMB Reagent is added and incubated for 20 minutes at room temperature. This results in the development of a blue color. Color development is stopped by the addition of Stop Solution, changing the color to yellow, and absorbance is measured at 450 nm. The concentration of \(\alpha\)-macroglobulin is proportional to the optical density of the test sample.

MATERIALS AND COMPONENTS

Materials provided with the kit:
- Anti-mouse \(\alpha\)-macroglobulin antibody coated microtiter plate with 96 wells (provided as 12 detachable strips of 8)
- Enzyme Conjugate Reagent, 11 ml
- Reference standard (lyophilized)
- Diluent (30 ml)
- 20x Wash solution (50 ml)
- TMB Reagent (One-Step) 11 ml
- Stop Solution (1N HCl), 11 ml

Materials required but not provided:
- Precision pipettes and tips
- Distilled or de-ionized water
- Polypropylene or glass tubes
- Vortex mixer
- Absorbent paper or paper towels
- Micro-Plate incubator/shaker mixing speed of \(\sim 150\) rpm
- Plate reader with an optical density range of 0-4 at 450 or 405 nm
- Graph paper (PC graphing software is optional)

STORAGE OF TEST KIT

The kit should be stored at 2-8°C and the microtiter plate should be kept in a sealed bag with desiccant to minimize exposure to damp air. Test kits will remain stable for six months from the date of purchase provided that the components are stored as described above.

GENERAL INSTRUCTIONS

1. All reagents should be allowed to reach room temperature (18-25°C) before use.
2. Serum or plasma samples should be diluted \(\sim 50,000\) fold with diluent in order to obtain values within the standard range.

WASH SOLUTION PREPARATION

The wash solution is provided as a 20x stock. Prior to use dilute the contents of the bottle (50 ml) with 950 ml of distilled or deionized water.

STANDARD PREPARATION

1. The mouse \(\alpha\)-macroglobulin standard is provided as a lyophilized stock. The volume of distilled or de-ionized water indicated on the vial label and mix gently until dissolved (the reconstituted standard remains stable at 2-8°C for several hours but should be aliquoted and frozen at or below -20°C after reconstitution if use beyond this time is intended).
2. Label 7 polypropylene tubes as 125, 62.5, 31.2, 15.6, 7.8, 3.9 and 0 ng/ml.
3. Add 250 \(\mu\)l of diluent into the tubes labeled 62.5, 31.2, 15.6, 7.8, 3.9 and 0 ng/ml.
4. Mix the volumes of diluent and reconstituted mouse \(\alpha\)-macroglobulin standard detailed on the standard vial label in the tube labeled 125 ng/ml.
5. Prepare a 62.5 ng/ml standard by diluting and mixing 250 \(\mu\)l of the 125 ng/ml standard with 250 \(\mu\)l of diluent in the tube labeled 62.5 ng/ml. Similarly prepare the 31.25, 15.6, 7.8, and 3.9 ng/ml standards by serial dilution.

SAMPLE PREPARATION

General Note: \(\alpha\)-Macroglobulin is present in normal mouse serum at a concentration of \(\sim 2.5\) mg/ml. In order to obtain values within the range of the standard curve, we suggest that samples be diluted 50,000 fold using the following procedure for each sample to be tested.

1. Dispense 998 \(\mu\)l of water and 297 \(\mu\)l of diluent into separate tubes.
2. Pipette and mix 2 \(\mu\)l of the serum/plasma sample into the tube containing 998 \(\mu\)l of water. This provides a 500 fold diluted sample.
3. Mix 3 μl of the 500 fold diluted sample with the 297 μl of diluent in the second tube. This provides a 50,000 fold dilution of the sample.
4. Repeat this procedure for each sample to be tested.

ASSAY PROCEDURE
1. Secure the desired number of coated wells in the holder.
2. Dispense 100 μl of standards and samples into the wells (standards and samples should be tested in duplicate).
3. Incubate on an orbital micro-plate shaker at 100-150 rpm at room temperature (18-25°C) for 45 minutes.
4. Remove the incubation mixture by flicking the plate contents into an appropriate Bio-waste container.
5. Wash and empty the microtiter wells 5 times with 1x wash solution. This may performed using either a plate washer (400 μl/well) or with a squirt bottle. The entire wash procedure should be performed as quickly as possible.
6. Strike the wells sharply onto absorbent paper or paper towels to remove all residual droplets.
7. Add 100 μl of enzyme conjugate reagent into each well.
8. Incubate on an orbital micro-plate shaker at 100-150 rpm at room temperature (18-25°C) for 45 minutes.
9. Wash as detailed in 4 and 5 above.
10. Strike the wells sharply onto absorbent paper or paper towels to remove residual droplets.
11. Dispense 100 μl of TMB Reagent into each well.
12. Gently mix on an orbital micro-plate shaker at 100-150 rpm at room temperature (18-25°C) for 20 minutes.
13. Stop the reaction by adding 100 μl of Stop Solution to each well.
14. Gently mix. It is important to make sure that all the blue color changes to yellow.
15. Read the optical density at 450 nm with a microtiter plate reader within 5 minutes. Please Note: If the A450 of the high standard(s) exceeds the limits of the plate reader, absorbance of all wells may be determined at 405 nm instead.

CALCULATION OF RESULTS
1. Calculate the average absorbance values (A450) for each set of reference standards, and samples.
2. Construct a standard curve by plotting the mean absorbance obtained from each reference standard against its concentration in ng/ml on linear graph paper, with absorbance values on the vertical or Y-axis and concentrations on the horizontal or X-axis.
3. Using the mean absorbance value for each sample, determine the corresponding concentration of α-macroglobulin in ng/ml from the standard curve.
4. Multiply the derived concentrations by the dilution factor to determine the actual concentration of α-macroglobulin in the serum/plasma sample.
5. PC graphing software may be used for the above steps.
6. If the OD450 values of samples fall outside the standard curve when tested at a dilution of 50,000. Samples should be diluted appropriately and re-tested.

TYPICAL STANDARD CURVE
A typical standard curve with optical density readings at 450nm on the Y axis against α-macroglobulin concentrations on the X axis is shown below. This curve is for the purpose of illustration only and should not be used to calculate unknowns. Each user should obtain his or her data and standard curve in each experiment.

<table>
<thead>
<tr>
<th>α-Macroglobulin (ng/ml)</th>
<th>Absorbance (450 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>125</td>
<td>3.140</td>
</tr>
<tr>
<td>62.5</td>
<td>2.046</td>
</tr>
<tr>
<td>31.25</td>
<td>1.419</td>
</tr>
<tr>
<td>15.6</td>
<td>0.848</td>
</tr>
<tr>
<td>7.8</td>
<td>0.552</td>
</tr>
<tr>
<td>3.9</td>
<td>0.395</td>
</tr>
<tr>
<td>0</td>
<td>0.167</td>
</tr>
</tbody>
</table>

REFERENCES