Purified anti-Tau, 210-230

Catalog # / Size: 806401 / 200 µl
806402 / 500 µl
806403 / 1 ml

Previously: Covance Catalog# SIG-39413
Signet Catalog# 9413-02, 9413-05, 9413-10

Clone: Tau 5
Isotype: Mouse IgG1
Reactivity: Human
Preparation: The antibody was purified by affinity chromatography.
Formulation: Phosphate-buffered solution (no preservatives or carrier proteins).
Concentration: 0.5 mg/ml

Storage: Do not store antibody diluted below 50 µg/mL. The antibody solution should be stored undiluted between 2°C and 8°C. Please note the storage condition for this antibody has been changed from -20°C to between 2°C and 8°C. You can also check your vial or your CoA to find the most accurate storage condition for this antibody.

Applications:

Applications: WB, IHC, ELISA

Recommended Usage: Each lot of this antibody is quality control tested by Western blotting.

The optimal working dilution should be determined for each specific assay condition.

• WB: 1:500 - 1:1,000
• IHC: 1:25 - 1:40

Tissue: Formalin-fixed Paraffin-embedded and frozen sections
Pre-treatment: For optimal staining, the sections should be pretreated with an antigen unmasking solution such as citrate buffer retrieval solution (Cat. No. 928501, 928601)
Primary incubation: 60 minutes at room temperature

Application Notes: This antibody is effective in immunoblotting (WB), immunohistochemistry (IHC), and ELISA.

Positive Tissue (Human): Alzheimer's Diseased Human Brain

This antibody is specific for an epitope that lies between amino acids 210-230 of human Tau.

Application References:

Description: Tau proteins are microtubule-associated protein (MAPs) which are abundant in neurons of the central nervous system, but are also expressed at very low levels in CNS astrocytes and oligodendrocytes and elsewhere. One of tau's main functions is to modulate the stability of axonal microtubules. Tau is active primarily in the distal portions of axons providing microtubule stabilization as well as flexibility. Pathologies and dementias of the nervous system such as Alzheimer's disease feature tau proteins that have become defective and no longer stabilize microtubules properly. As a result, tau forms aggregates with specific structural properties referred to as Paired Helical Filaments (PHFs) that are a characteristic of many different types of dementias, known as tauopathies.

Tau has two primary ways of controlling microtubule stability: isoforms and phosphorylation. Six tau isoforms exist in human brain tissue, and they are distinguished by the number of binding domains. Three isoforms have three binding domains and the remaining three have four binding domains. The binding domains are located in the carboxy-terminus of the protein and are positively-charged (for binding to the negatively-charged microtubule). Tau

For research use only. Not for diagnostic use. Not for resale. BioLegend will not be held responsible for patent infringement or other violations that may occur with the use of our products.

*These products may be covered by one or more Limited Use Label Licenses (see the BioLegend Catalog or our website, www.biolegend.com/ordering/license). BioLegend products may not be transferred to third parties, resold, modified for resale, or used to manufacture commercial products, reverse engineer functionally similar materials, or to provide a service to third parties without written approval of BioLegend. By use of these products you accept the terms and conditions of all applicable Limited Use Label Licenses. Unless otherwise indicated, these products are for research use only and are not intended for human or animal diagnostic, therapeutic or commercial use.
isoforms with four binding domains are better at stabilizing microtubules than those with three binding domains.

Thus, in the human brain, the tau proteins constitute a family of six isoforms with the range from 352-441 amino acids. They also differ in either zero, one or two inserts of 29 amino acids at the N-terminal part (exon 2 and 3), and three or four repeat-binding regions at the C-terminus. So, the longest isoform in the CNS has four repeats (R1, R2, R3 and R4) and two inserts (441 amino acids total), while the shortest isoform has three repeats (R1, R3 and R4) and no insert (352 amino acids total). Tau is also a phosphoprotein with 79 potential Serine (Ser) and Threonine (Thr) phosphorylation sites on the longest tau isoform. Phosphorylation has been reported on approximately 30 of these sites in normal tau proteins. Mechanisms that drive tau lesion formation in the highly prevalent sporadic form of AD are not fully understood, but appear to involve abnormal post-translational modifications (PTMs) that influence tau function, stability, and aggregation propensity.

Other Names: Microtubule-associated protein tau, PHF-tau, paired helical filament-tau, neurofibrillary tangle protein, microtubule-associated protein tau, isoform 4, G protein beta1/gamma2 subunit-interacting factor 1, DDPAC, FTDP-17, MAPTL, MSTD, MTBT1, MTBT2, PPND

Related Products:

<table>
<thead>
<tr>
<th>Product</th>
<th>Clone</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified anti-Tau, 185-195</td>
<td>77E9</td>
<td>WB, IHC</td>
</tr>
<tr>
<td>Purified anti-Tau, 185-195</td>
<td>39E10</td>
<td>WB, IHC</td>
</tr>
<tr>
<td>Purified anti-Tau, 267-278</td>
<td>5C7</td>
<td>WB, IHC</td>
</tr>
<tr>
<td>Purified anti-Tau, 1-100</td>
<td>43D</td>
<td>WB, IHC</td>
</tr>
<tr>
<td>Purified anti-Tau, 404-421</td>
<td>Tau46</td>
<td>WB, IHC, ELISA</td>
</tr>
</tbody>
</table>