GENERAL INFORMATION

Product Name : pET Expression Vector pETIA

Code No. :
Size : $\quad 15 \mu \mathrm{~g}$ (lyophilized plasmid contains salt of TE buffer)
Storage :
Reconstitution :

This product is shipped at ambient temperature. Upon receipt, store at $-20{ }^{\circ} \mathrm{C}$
Resuspend the lyophilized pETIA with $15 \mu \mathrm{l}$ of sterile water to make $1 \mu \mathrm{~g} / \mu \mathrm{l}$ plasmid in $1 \times$ TE buffer. After reconstitution, store at $-20^{\circ} \mathrm{C}$

Product Description : pETIA is a medium copy number, ampicillin resistant, stringent controllable T7 bacterial expression vector. The T7 expression system is one of the strongest expression systems and has been widely used with a coupling of BL21 (DE3) E. coli cell. T7 RNA polymerase gene is integrated in a genome of BL21(DE3) under control of lacUV5 promoter. Upon addition of isopropyl-1-thio- β-D-galactopyranoside (IPTG), T7 RNA polymerase is expressed in the BL21(DE3) cells harboring pETIA vector, and it induces a high-level protein expression from T7 promoter of pETIA. The pETIA has a lacI gene, which represses T7 RNA polymerase gene in the absence of IPTG. The regulation with lac repressor is beneficial to repress a basal level protein expression and to maintain a recombinant plasmid in BL21 (DE3) cell.

T7 promoter :	$213-229$
T7 transcription start :	230
His Tag :	$305-322$
T7 terminator :	$498-545$
lacI :	$2891-3973$
pMB1 ori :	$1695-2314$
Amp (bla) :	$680-1540$

BioDynamics Laboratory Inc.

PRODUCT INFORMATION

Features of T7 expression vectors

BioDynamics Laboratory Inc. provides 6 kinds of T7 expression vectors, pETUA, pETBA, pETIA, pETUK, pETBK, and pETIK. These vectors have the same multicloning site and specific feature of each vector is below:

	Plasmid copy number	Replicon	Antibiotic resistance	Feature and recommendation
pETUA	high copy	pUC	ampicillin	for non-toxic protein expression
pETBA	medium copy	pMB1	ampicillin	general expression
pETIA	medium copy	pMB1	ampicillin	stringent regulation with lac repressor
pETUK	high copy	pUC	kanamycin	for non-toxic protein expression
pETBK	medium copy	pMB1	kanamycin	general expression
pETIK	medium copy	pMB1	kanamycin	stringent regulation with lac repressor

pETIA Sequence

GTTTGACAGC	TTATCATCGA	G	CACCAATGCT	TCTGGCGTCA	GGCAGCCATC	60
GAAGCTGTG	GTATGGCTGT	GCAGGTCGTA	AATCACTGCA	TAATTCGTGT	CGCTCAAGGC	0
GCACTCCCGT	TCT	GT	CCGACATCAT	AACGGTTCTG	GCAAATATTC	80
TGAAATGAGC	T	AT	A	CTCACTATAG	A	240
ACGGTTTCCC	TCT	A	A	GG	G	300
AT	CA	A	TAGCATGACT	GGTGGACAGC	G	360
GGACGATGAC	GATAAGGA	CCCGGGT	GAGCTC	TCGATTTCGT	T	20
GCGGCCGCC	GTTTAATCC	GCTGCTA	AAGCCCG	GGAAGCTGAG	G	
GCTG	GCAATAACTA	GCATAACCCC	TTGGGG	TAAACGG	GAGGGGTT	40
AA	AGGAGGA	ATATCCGGAT	GCGTTTCTAC	A	T	600
TAAATACAT	TCAAATATGT	ATCCGCTCAT	GAGACAATAA	CCCTGATAAA	TGCTTCAATA	60
ATATTGAAAA	AGGAAGAGT	T	A	GTCGCCCTTA	TTCCCTTTTT	720
TGCGGCATTT	TGCCTTCCTG	TTTTTGCTCA	CCCAGAAACG	CTGGTGAAAG	TAAAAGATGC	80
GAAGATCAG	TTGGGTGCA	GAGTGGGT	CATCGAACT	GATCTCAACA	AGAT	840
GT	TTTCGCC	CG	TCCAAT	AG	AAGTTCTGCT	900
TGTGGCGCG	GTATTATCC	GTGTTGACGC	CGGGCAAGAG	CAACTCGGTC	GCCGCATACA	960
TCTCAG	AATGACTTG	TTGAGTAC	ACCAGTC	GAAAAGCATC	TTACGGATGG	1020
ATGACAGTA	AGAGAATTAT	GCAGTGCTGC	CATAACCATG	AgTGAtAACA	CTGCGGCCAA	1080
тTACTTCTG	ACAACGATCG	GAGGACCGAA	GGAGCTAAC	GCTTTTTTGC	ACAACATGGG	
GGATCATGTA	ACTCGCCTTG	ATCGTTGGGA	ACCGGAGCTG	AATGAAGCCA	TACCAAACGA	120
CGAGCGTGAC	ACCACGATGC	CTACAGCAAT	GGCAACAACG	TTGCGCAAAC	TATTAACTGG	1260
CGAACTACTT	ACTCTAGCTT	CCCGGCAACA	ATTAATAGAC	TGGATGGAGG	CGGATAAAGT	132
TGCAGGACCA	CTTCTGCGCT	CGGCCCTTCC	GGCTGGCTGG	TTTATTGCTG	ATAAATCTGG	1380
CCGGTGAG	CGTGGGTCT	GCGGTATCAT	TGCAGCACTG	GGGCCAGATG	GTAAGCCCTC	

BioDynamics Laboratory Inc.

PRODUCT INFORMATION

GATCGCTGAG ATAGGTGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATTT AAAAGGATCT AGGTGAAGAT 1620 CCTTTTTGAT AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC 1680 AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTTCTGC GCGTAATCTG 1740 CTGCTTGCAA ACAAAAAAAC CACCGCTACC AGCGGTGGTT TGTTTGCCGG ATCAAGAGCT 1800 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG CAGATACCAA ATACTGTCCT 1860 TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT GTAGCACCGC CTACATACCT 1920 CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG 1980 GTTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA CGGGGGGTTC 2040 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA 2100 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC CGGTAAGCGG 2160 CAGGGTCGGA ACAGGAGAGC GCACGAGGGA GCTTCCAGGG GGAAACGCCT GGTATCTTTA 2220 TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG 2280 GgGGCgGAgC CTATGGAAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC TGGCCTTTTG 2340 CTGGCCTTTT GCTCACATGT TCTTTCCTGC GTTATCCCCT GATTCTGTGG ATAACCGTAT 2400 TACCGCCTTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA ACGACCGAGC GCAGCGAGTC 2460 AgTGAGCGAG GAAGCGGAAG AGCGCCTGAT GCGGTATTTT CTCCTTACGC ATCTGTGCGG 2520 TATTTCACAC CGCATATATG GTGCACTCTC AGTACAATCT GCTCTGATGC CGCATAGTTA 2580 AGCCAGTATA CACTCCGCTA TCGCTACGTG ACTGGGTCAT GGCTGCGCCC CGACACCCGC 2640 CAACACCCGC TGACGCGCCC TGACGGGCTT GTCTGCTCCC GGCATCCGCT TACAGACAAG 2700 CTGTGACCGT CTCCGGGAGC TGCATGTGTC AGAGGTTTTC ACCGTCATCA CCGAAACGCG 2760 CGAGGCAGCA GATCAATTCG CGCGCGAAGG CGAAGCGGCA TGCATTTACG TTGACACCAT 2820 CGAATGGTGC AAAACCTTTC GCGGTATGGC ATGATAGCGC CCGGAAGAGA GTCAATTCAG 2880 GgTGgTGAAT GTGAAACCAG TAACGTTATA CGATGTCGCA GAGTATGCCG GTGTCTCTTA 2940 TCAGACCGTT TCCCGCGTGG TGAACCAGGC CAGCCACGTT TCTGCGAAAA CGCGGGAAAA 3000 AgTGGAAGCG GCGATGGCGG AGCTGAATTA CATTCCCAAC CGCGTGGCAC AACAACTGGC 3060 GGGCAAACAG TCGTTGCTGA TTGGCGTTGC CACCTCCAGT CTGGCCCTGC ACGCGCCGTC 3120 GCAAATTGTC GCGGCGATTA AATCTCGCGC CGATCAACTG GGTGCCAGCG TGGTGGTGTC 3180 GATGGTAGAA CGAAGCGGCG TCGAAGCCTG TAAAGCGGCG GTGCACAATC TTCTCGCGCA 3240 ACGCGTCAGT GGGCTGATCA TTAACTATCC GCTGGATGAC CAGGATGCCA TTGCTGTGGA 3300 AGCTGCCTGC ACTAATGTTC CGGCGTTATT TCTTGATGTC TCTGACCAGA CACCCATCAA 3360 CAGTATTATT TTCTCCCATG AAGACGGTAC GCGACTGGGC GTGGAGCATC TGGTCGCATT 3420 GGGTCACCAG CAAATCGCGC TGTTAGCGGG CCCATTAAGT TCTGTCTCGG CGCGTCTGCG 3480 TCTGGCTGGC TGGCATAAAT ATCTCACTCG CAATCAAATT CAGCCGATAG CGGAACGGGA 3540 AgGCGACTGG AgTGCCATGT CCGGTTTTCA ACAAACCATG CAAATGCTGA ATGAGGGCAT 3600 CGTTCCCACT GCGATGCTGG TTGCCAACGA TCAGATGGCG CTGGGCGCAA TGCGCGCCAT 3660 TACCGAGTCC GGGCTGCGCG TTGGTGCGGA TATCTCGGTA GTGGGATACG ACGATACCGA 3720 AgACAGCTCA TGTTATATCC CGCCGTCAAC CACCATCAAA CAGGATTTTC GCCTGCTGGG 3780 GCAAACCAGC GTGGACCGCT TGCTGCAACT CTCTCAGGGC CAGGCGGTGA AGGGCAATCA 3840 GCTGTTGCCC GTCTCACTGG TGAAAAGAAA AACCACCCTG GCGCCCAATA CGCAAACCGC 3900 CTCTCCCCGC GCGTTGGCCG ATTCATTAAT GCAGCTGGCA CGACAGGTTT CCCGACTGGA 3960 AAGCGGGCAG TGAGCGCAAC GCAATTAATG TGAGTTAGCG CGAATTGATC TG 4012

PRODUCT INFORMATION

PRODUCT USAGE

Cloning of a gene to pETIA:

Below is the multiple cloning site of pETIA. To express a recombinant protein correctly, it is necessary to clone the gene of interest in frame with an N-terminal peptide of pETIA. The start codon of pETIA is boxed ATG in the below figure. Digest pETIA completely with appropriate restriction enzyme(s) to form DNA ends which can be ligated to the gene of interest. If only one restriction enzyme is used, dephosphorylation of a vector is often performed. Ligation of processed pETIA and the gene of interest can be performed by the standard procedure. The following transformation procedure should be done with non-expression hosts such as DH5 α or JM109. Recombinant plasmids derived from pETIA are selected by colony-PCR, enzyme digestion of prepared plasmids, or other methods. Sequencing of cloning portion and an insert region on the obtained plasmid is recommended to determine the correct recombinant plasmids for expression experiments.

EK: Enterokinase recognition sequence (AspAspAspAspLys \downarrow)
ATG: start codon TAA : stop codon

Protein Expression Procedure :

The following protocol is a general guide for the protein expression by using T7 expression vectors, pETUA, pETBA, pETIA, pETUK, pETBK, and pETIK, coupling with an expression host E. coli cell, BL21(DE3) cells or BL21(DE3)pLysS cells.

PRODUCT INFORMATION

- Before starting:

Transform BL21(DE3) or BL21(DE3)pLysS cells with the prepared expression plasmid by the standard procedure.

\ddagger Notes for transformation

1. Sometimes, expression may vary among transformants. If large and small colonies are observed in the same plate, the expressed protein may affect the growth of the E. coli cells.
2. If the expressed protein is toxic to E. coli cells, transformants may not be obtained.

In this case, repression of a basal level expression by T7 promoter may work, see "Notes for expression. "

- Expression:

1. Following transformation, pick a colony and inoculate it into 3 ml of LB medium containing the appropriate antibiotic with shaking at $37^{\circ} \mathrm{C}$, overnight. For the BL21(DE3)pLysS strain, it is preferable to add chloramphenicol at a final concentration of $34 \mu \mathrm{~g} / \mathrm{ml}$ in the overnight culture to maintain pLysS.
2. The next morning, transfer 0.5 ml of the overnight culture to a new 10 ml of LB medium containing the appropriate antibiotic to select the expression plasmid. Grow the culture with shaking at $37^{\circ} \mathrm{C}$ until the OD_{600} reaches 0.5 (approximately 2 hrs but this depended on the expression plasmids).

When using BL21(DE3)pLys, chloramphenicol is not usually required in the short-period culture. 3. When the OD_{600} reaches 0.5 , transfer an aliquot (e.g., 1 ml) of the culture to a new centrifuge tube and centrifuge it to harvest cells. Store the cells at $-80^{\circ} \mathrm{C}$ until analysis.

Add IPTG to a final concentration of 1 mM to the rest of the culture and grow the culture with shaking at $37^{\circ} \mathrm{C}$ for 3 hours.

The IPTG concentration and induction time are general values. It is recommended to determine the optimal condition for the target gene expression.
4. After the induction, harvest the cells. To analyze the expression, before harvesting the cells, transfer an aliquot of the culture (e.g., 1 ml) and centrifuge it to precipitate the cells.

- Analysis

1. Suspend the precipitated cells (from the 1 ml culture) in $200 \mu \mathrm{l}$ of $1 \times$ PBS buffer.
2. Mix an aliquot of the suspension (e.g., $100 \mu \mathrm{l}$) with an equal volume of $2 \times$ SDS sample buffer.
3. Heat the mixture at $85^{\circ} \mathrm{C}$ for 5 min , then centrifuge at $10,000 \mathrm{~g}$ for 10 min . Subject the supernatant (e.g., 5-25 $\mu \mathrm{l}$) to SDS-PAGE. Western blot will help analyzing the expression of the target protein.
$\cdot 2 \times$ SDS sample buffer : 2% sodium dodecyl sulfate, $5 \% 2$-mercaptoethanol, 20% glycerol, 0.02% BPB, 62.5 mM Tris-HCl, pH6.8

- $1 \times$ PBS buffer.: 20 mM sodium phosphate, 150 mM sodium chloride, pH 7.4

An arrow shows the expressed 70 KDa proteins. Only inducted cells expressed 70 KDa proteins.

Figure of protein expression from pETIA

A gene of 70 KDa protein was cloned into pETIA (pETIA/70K). BL21(DE3) cell was transformed with the pETIA/70K, one of colonies were cultured overnight and transferred to two tubes (\#1, \#2) containing culture medium. IPTG was added to only tube $\# 2$ when the OD_{600} reaches 0.5 . At each stage, OD_{600} of the culture was determined and the same amount of cells were lysed and subjected to 10% polyacrylamide gel SDS electrophoresis.
Lane 1: DynaMarker Protein Eco (\#DM610)
Lane 2, 3 : Cells from tubes \#1 and 2 before induction. Lane 4 : Cells (tubes \#1), two hours after OD0.5.
Lane 5 :Cells (tubes \#2), two hours after induction
Lane 6 : Cells (tubes \#1), 4 hours after OD0.5.
Lane 7 :Cells (tubes \#2), 4 hours after induction
\ddagger Notes for expression:

1. As the T7 expression method is a high-level protein expression system, some basal level expression of the target protein will occur in uninduced cells. This is likely problematic in cases in which the target protein is toxic to E. coli. cells. In this case, it may be necessary to decrease the basal level expression as follows:
a) Use a lower-copy number T7 expression vector, pETBA, pETBK, but not pETUA, pETUK
b) Use a stringent regulated expression vector, pETIA, pETIK.
c) Use liquid medium and agar plates supplemented with glucose (0.5-1 \%).

Glucose is known to decrease a basal expression from lacUV5 promoter ${ }^{2}$.
d) Use BL21(DE3)pLysS strain but not BL21(DE3) strain.

The T7 Lysozyme encoded in a pLysS plasmid reduces the basal level of T7 RNA polymerase Expression ${ }^{3)}$. This leads to suppression of the basal level expression of the target protein.
2. When expressing proteins in BL21(DE3) cells, if it takes longer time (5 hrs or more) to reach 0.5 at OD_{600} after inoculating the overnight culture $(0.5 \mathrm{ml})$ to a new LB medium $(10 \mathrm{ml})$, the expressed protein is likely toxic to E. coli cells.
3. When BL21(DE3) cells lyse after induction with IPTG, the expressed protein is likely toxic to E. coli cells.

BioDynamics Laboratory Inc.

PRODUCT INFORMATION

Reference:

1) Studier, F.W. and Moffatt, B.A., J. Mol. Biol. 189 (1986) 113-130.
2) Pan, S. and Malcom, B.A., BioTechniques 29 (2000), 1234-1238
3) Moffatt, B.A. and Studier, F.W., Cell 49 (1987) 221-227

General reference in this Product Information
Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Related Products:

DV210	pET Expression Vector pETBA	DV215	pET Expression Vector pETIA
DV220	pET Expression Vector pETUK	DV230	pET Expression Vector pETBK
DV235	pET Expression Vector pETIK	DS110	DNA Ligation Kit ver. 2
DS210	Competent Cell JM109	DS220	Competent Cell DH5 α
DS225	Jet Competent Cell (DH5 α)	DS240	Competent Cell BL21
DS255	Zip Competent Cell BL21(DE3)	DS260	Competent Cell BL21(DE3)pLysS
DS500	QuickBlue Protein Staining Solution		

- Purchaser Notification

This product is manufactured based on the T7 expression system which is the subject of US patent applications assigned to Brookhaven Science Associates, LLC (BSA). The product must be used only outside the United States and its territories. Neither this product nor materials prepared used by the T7 expression system are allowed to be distributed in the US and its territories without license of BSA. Information about license regarding the T7 expression system may be obtained from the Office of Intellectual Property and Sponsored Research, Brookhaven National Laboratory, Building 185, P.O. Box 500, Upton, New York 11973-5000, USA.

